This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function H mapping polynomials p to their coefficient given a bag of variables F is a group homomorphism. (Contributed by SN, 15-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplmapghm.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplmapghm.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplmapghm.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplmapghm.h | ⊢ 𝐻 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑝 ‘ 𝐹 ) ) | ||
| mplmapghm.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| mplmapghm.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| mplmapghm.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | ||
| Assertion | mplmapghm | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑃 GrpHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmapghm.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplmapghm.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | mplmapghm.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 4 | mplmapghm.h | ⊢ 𝐻 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑝 ‘ 𝐹 ) ) | |
| 5 | mplmapghm.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | mplmapghm.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 7 | mplmapghm.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 11 | 1 | mplgrp | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp ) → 𝑃 ∈ Grp ) |
| 12 | 5 6 11 | syl2anc | ⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) | |
| 14 | 1 8 2 3 13 | mplelf | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 15 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐹 ∈ 𝐷 ) |
| 16 | 14 15 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 ‘ 𝐹 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 | 16 4 | fmptd | ⊢ ( 𝜑 → 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 18 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑞 ∈ 𝐵 ) | |
| 19 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑟 ∈ 𝐵 ) | |
| 20 | 1 2 10 9 18 19 | mpladd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) = ( 𝑞 ∘f ( +g ‘ 𝑅 ) 𝑟 ) ) |
| 21 | 20 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞 ∘f ( +g ‘ 𝑅 ) 𝑟 ) ‘ 𝐹 ) ) |
| 22 | 1 8 2 3 18 | mplelf | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑞 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 23 | 22 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑞 Fn 𝐷 ) |
| 24 | 1 8 2 3 19 | mplelf | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑟 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 25 | 24 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑟 Fn 𝐷 ) |
| 26 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 27 | 3 26 | rabex2 | ⊢ 𝐷 ∈ V |
| 28 | 27 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝐷 ∈ V ) |
| 29 | inidm | ⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 | |
| 30 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) ∧ 𝐹 ∈ 𝐷 ) → ( 𝑞 ‘ 𝐹 ) = ( 𝑞 ‘ 𝐹 ) ) | |
| 31 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) ∧ 𝐹 ∈ 𝐷 ) → ( 𝑟 ‘ 𝐹 ) = ( 𝑟 ‘ 𝐹 ) ) | |
| 32 | 23 25 28 28 29 30 31 | ofval | ⊢ ( ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) ∧ 𝐹 ∈ 𝐷 ) → ( ( 𝑞 ∘f ( +g ‘ 𝑅 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞 ‘ 𝐹 ) ( +g ‘ 𝑅 ) ( 𝑟 ‘ 𝐹 ) ) ) |
| 33 | 7 32 | mpidan | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ∘f ( +g ‘ 𝑅 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞 ‘ 𝐹 ) ( +g ‘ 𝑅 ) ( 𝑟 ‘ 𝐹 ) ) ) |
| 34 | 21 33 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞 ‘ 𝐹 ) ( +g ‘ 𝑅 ) ( 𝑟 ‘ 𝐹 ) ) ) |
| 35 | fveq1 | ⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( 𝑝 ‘ 𝐹 ) = ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) ) | |
| 36 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑃 ∈ Grp ) |
| 37 | 2 9 36 18 19 | grpcld | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ∈ 𝐵 ) |
| 38 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) ∈ V ) | |
| 39 | 4 35 37 38 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) ) |
| 40 | fveq1 | ⊢ ( 𝑝 = 𝑞 → ( 𝑝 ‘ 𝐹 ) = ( 𝑞 ‘ 𝐹 ) ) | |
| 41 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ‘ 𝐹 ) ∈ V ) | |
| 42 | 4 40 18 41 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐻 ‘ 𝑞 ) = ( 𝑞 ‘ 𝐹 ) ) |
| 43 | fveq1 | ⊢ ( 𝑝 = 𝑟 → ( 𝑝 ‘ 𝐹 ) = ( 𝑟 ‘ 𝐹 ) ) | |
| 44 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑟 ‘ 𝐹 ) ∈ V ) | |
| 45 | 4 43 19 44 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐻 ‘ 𝑟 ) = ( 𝑟 ‘ 𝐹 ) ) |
| 46 | 42 45 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝐻 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐻 ‘ 𝑟 ) ) = ( ( 𝑞 ‘ 𝐹 ) ( +g ‘ 𝑅 ) ( 𝑟 ‘ 𝐹 ) ) ) |
| 47 | 34 39 46 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐻 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐻 ‘ 𝑟 ) ) ) |
| 48 | 2 8 9 10 12 6 17 47 | isghmd | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑃 GrpHom 𝑅 ) ) |