This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismon.b | |- B = ( Base ` C ) |
|
| ismon.h | |- H = ( Hom ` C ) |
||
| ismon.o | |- .x. = ( comp ` C ) |
||
| ismon.s | |- M = ( Mono ` C ) |
||
| ismon.c | |- ( ph -> C e. Cat ) |
||
| Assertion | monfval | |- ( ph -> M = ( x e. B , y e. B |-> { f e. ( x H y ) | A. z e. B Fun `' ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismon.b | |- B = ( Base ` C ) |
|
| 2 | ismon.h | |- H = ( Hom ` C ) |
|
| 3 | ismon.o | |- .x. = ( comp ` C ) |
|
| 4 | ismon.s | |- M = ( Mono ` C ) |
|
| 5 | ismon.c | |- ( ph -> C e. Cat ) |
|
| 6 | fvexd | |- ( c = C -> ( Base ` c ) e. _V ) |
|
| 7 | fveq2 | |- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( c = C -> ( Base ` c ) = B ) |
| 9 | fvexd | |- ( ( c = C /\ b = B ) -> ( Hom ` c ) e. _V ) |
|
| 10 | simpl | |- ( ( c = C /\ b = B ) -> c = C ) |
|
| 11 | 10 | fveq2d | |- ( ( c = C /\ b = B ) -> ( Hom ` c ) = ( Hom ` C ) ) |
| 12 | 11 2 | eqtr4di | |- ( ( c = C /\ b = B ) -> ( Hom ` c ) = H ) |
| 13 | simplr | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> b = B ) |
|
| 14 | simpr | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> h = H ) |
|
| 15 | 14 | oveqd | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> ( x h y ) = ( x H y ) ) |
| 16 | 14 | oveqd | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> ( z h x ) = ( z H x ) ) |
| 17 | simpll | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> c = C ) |
|
| 18 | 17 | fveq2d | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> ( comp ` c ) = ( comp ` C ) ) |
| 19 | 18 3 | eqtr4di | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> ( comp ` c ) = .x. ) |
| 20 | 19 | oveqd | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> ( <. z , x >. ( comp ` c ) y ) = ( <. z , x >. .x. y ) ) |
| 21 | 20 | oveqd | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> ( f ( <. z , x >. ( comp ` c ) y ) g ) = ( f ( <. z , x >. .x. y ) g ) ) |
| 22 | 16 21 | mpteq12dv | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) = ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) ) |
| 23 | 22 | cnveqd | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) = `' ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) ) |
| 24 | 23 | funeqd | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> ( Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) <-> Fun `' ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) ) ) |
| 25 | 13 24 | raleqbidv | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> ( A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) <-> A. z e. B Fun `' ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) ) ) |
| 26 | 15 25 | rabeqbidv | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } = { f e. ( x H y ) | A. z e. B Fun `' ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) } ) |
| 27 | 13 13 26 | mpoeq123dv | |- ( ( ( c = C /\ b = B ) /\ h = H ) -> ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) = ( x e. B , y e. B |-> { f e. ( x H y ) | A. z e. B Fun `' ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) } ) ) |
| 28 | 9 12 27 | csbied2 | |- ( ( c = C /\ b = B ) -> [_ ( Hom ` c ) / h ]_ ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) = ( x e. B , y e. B |-> { f e. ( x H y ) | A. z e. B Fun `' ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) } ) ) |
| 29 | 6 8 28 | csbied2 | |- ( c = C -> [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) = ( x e. B , y e. B |-> { f e. ( x H y ) | A. z e. B Fun `' ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) } ) ) |
| 30 | df-mon | |- Mono = ( c e. Cat |-> [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) ) |
|
| 31 | 1 | fvexi | |- B e. _V |
| 32 | 31 31 | mpoex | |- ( x e. B , y e. B |-> { f e. ( x H y ) | A. z e. B Fun `' ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) } ) e. _V |
| 33 | 29 30 32 | fvmpt | |- ( C e. Cat -> ( Mono ` C ) = ( x e. B , y e. B |-> { f e. ( x H y ) | A. z e. B Fun `' ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) } ) ) |
| 34 | 5 33 | syl | |- ( ph -> ( Mono ` C ) = ( x e. B , y e. B |-> { f e. ( x H y ) | A. z e. B Fun `' ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) } ) ) |
| 35 | 4 34 | eqtrid | |- ( ph -> M = ( x e. B , y e. B |-> { f e. ( x H y ) | A. z e. B Fun `' ( g e. ( z H x ) |-> ( f ( <. z , x >. .x. y ) g ) ) } ) ) |