This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modadd12d.1 | |- ( ph -> A e. RR ) |
|
| modadd12d.2 | |- ( ph -> B e. RR ) |
||
| modadd12d.3 | |- ( ph -> C e. RR ) |
||
| modadd12d.4 | |- ( ph -> D e. RR ) |
||
| modadd12d.5 | |- ( ph -> E e. RR+ ) |
||
| modadd12d.6 | |- ( ph -> ( A mod E ) = ( B mod E ) ) |
||
| modadd12d.7 | |- ( ph -> ( C mod E ) = ( D mod E ) ) |
||
| Assertion | modsub12d | |- ( ph -> ( ( A - C ) mod E ) = ( ( B - D ) mod E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modadd12d.1 | |- ( ph -> A e. RR ) |
|
| 2 | modadd12d.2 | |- ( ph -> B e. RR ) |
|
| 3 | modadd12d.3 | |- ( ph -> C e. RR ) |
|
| 4 | modadd12d.4 | |- ( ph -> D e. RR ) |
|
| 5 | modadd12d.5 | |- ( ph -> E e. RR+ ) |
|
| 6 | modadd12d.6 | |- ( ph -> ( A mod E ) = ( B mod E ) ) |
|
| 7 | modadd12d.7 | |- ( ph -> ( C mod E ) = ( D mod E ) ) |
|
| 8 | 3 | renegcld | |- ( ph -> -u C e. RR ) |
| 9 | 4 | renegcld | |- ( ph -> -u D e. RR ) |
| 10 | 3 4 5 7 | modnegd | |- ( ph -> ( -u C mod E ) = ( -u D mod E ) ) |
| 11 | 1 2 8 9 5 6 10 | modadd12d | |- ( ph -> ( ( A + -u C ) mod E ) = ( ( B + -u D ) mod E ) ) |
| 12 | 1 | recnd | |- ( ph -> A e. CC ) |
| 13 | 3 | recnd | |- ( ph -> C e. CC ) |
| 14 | 12 13 | negsubd | |- ( ph -> ( A + -u C ) = ( A - C ) ) |
| 15 | 14 | oveq1d | |- ( ph -> ( ( A + -u C ) mod E ) = ( ( A - C ) mod E ) ) |
| 16 | 2 | recnd | |- ( ph -> B e. CC ) |
| 17 | 4 | recnd | |- ( ph -> D e. CC ) |
| 18 | 16 17 | negsubd | |- ( ph -> ( B + -u D ) = ( B - D ) ) |
| 19 | 18 | oveq1d | |- ( ph -> ( ( B + -u D ) mod E ) = ( ( B - D ) mod E ) ) |
| 20 | 11 15 19 | 3eqtr3d | |- ( ph -> ( ( A - C ) mod E ) = ( ( B - D ) mod E ) ) |