This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Additive property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modadd12d.1 | |- ( ph -> A e. RR ) |
|
| modadd12d.2 | |- ( ph -> B e. RR ) |
||
| modadd12d.3 | |- ( ph -> C e. RR ) |
||
| modadd12d.4 | |- ( ph -> D e. RR ) |
||
| modadd12d.5 | |- ( ph -> E e. RR+ ) |
||
| modadd12d.6 | |- ( ph -> ( A mod E ) = ( B mod E ) ) |
||
| modadd12d.7 | |- ( ph -> ( C mod E ) = ( D mod E ) ) |
||
| Assertion | modadd12d | |- ( ph -> ( ( A + C ) mod E ) = ( ( B + D ) mod E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modadd12d.1 | |- ( ph -> A e. RR ) |
|
| 2 | modadd12d.2 | |- ( ph -> B e. RR ) |
|
| 3 | modadd12d.3 | |- ( ph -> C e. RR ) |
|
| 4 | modadd12d.4 | |- ( ph -> D e. RR ) |
|
| 5 | modadd12d.5 | |- ( ph -> E e. RR+ ) |
|
| 6 | modadd12d.6 | |- ( ph -> ( A mod E ) = ( B mod E ) ) |
|
| 7 | modadd12d.7 | |- ( ph -> ( C mod E ) = ( D mod E ) ) |
|
| 8 | modadd1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ E e. RR+ ) /\ ( A mod E ) = ( B mod E ) ) -> ( ( A + C ) mod E ) = ( ( B + C ) mod E ) ) |
|
| 9 | 1 2 3 5 6 8 | syl221anc | |- ( ph -> ( ( A + C ) mod E ) = ( ( B + C ) mod E ) ) |
| 10 | 2 | recnd | |- ( ph -> B e. CC ) |
| 11 | 3 | recnd | |- ( ph -> C e. CC ) |
| 12 | 10 11 | addcomd | |- ( ph -> ( B + C ) = ( C + B ) ) |
| 13 | 12 | oveq1d | |- ( ph -> ( ( B + C ) mod E ) = ( ( C + B ) mod E ) ) |
| 14 | modadd1 | |- ( ( ( C e. RR /\ D e. RR ) /\ ( B e. RR /\ E e. RR+ ) /\ ( C mod E ) = ( D mod E ) ) -> ( ( C + B ) mod E ) = ( ( D + B ) mod E ) ) |
|
| 15 | 3 4 2 5 7 14 | syl221anc | |- ( ph -> ( ( C + B ) mod E ) = ( ( D + B ) mod E ) ) |
| 16 | 4 | recnd | |- ( ph -> D e. CC ) |
| 17 | 16 10 | addcomd | |- ( ph -> ( D + B ) = ( B + D ) ) |
| 18 | 17 | oveq1d | |- ( ph -> ( ( D + B ) mod E ) = ( ( B + D ) mod E ) ) |
| 19 | 13 15 18 | 3eqtrd | |- ( ph -> ( ( B + C ) mod E ) = ( ( B + D ) mod E ) ) |
| 20 | 9 19 | eqtrd | |- ( ph -> ( ( A + C ) mod E ) = ( ( B + D ) mod E ) ) |