This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of a real number modulo a positive real number and another real number equals the difference of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modsubmod | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) - B ) mod M ) = ( ( A - B ) mod M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modcl | |- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) |
|
| 2 | 1 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) |
| 3 | simp1 | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> A e. RR ) |
|
| 4 | simp2 | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> B e. RR ) |
|
| 5 | simp3 | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> M e. RR+ ) |
|
| 6 | modabs2 | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) mod M ) = ( A mod M ) ) |
|
| 7 | 6 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( A mod M ) mod M ) = ( A mod M ) ) |
| 8 | eqidd | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( B mod M ) = ( B mod M ) ) |
|
| 9 | 2 3 4 4 5 7 8 | modsub12d | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) - B ) mod M ) = ( ( A - B ) mod M ) ) |