This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modadd12d.1 | ||
| modadd12d.2 | |||
| modadd12d.3 | |||
| modadd12d.4 | |||
| modadd12d.5 | |||
| modadd12d.6 | |||
| modadd12d.7 | |||
| Assertion | modsub12d |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modadd12d.1 | ||
| 2 | modadd12d.2 | ||
| 3 | modadd12d.3 | ||
| 4 | modadd12d.4 | ||
| 5 | modadd12d.5 | ||
| 6 | modadd12d.6 | ||
| 7 | modadd12d.7 | ||
| 8 | 3 | renegcld | |
| 9 | 4 | renegcld | |
| 10 | 3 4 5 7 | modnegd | |
| 11 | 1 2 8 9 5 6 10 | modadd12d | |
| 12 | 1 | recnd | |
| 13 | 3 | recnd | |
| 14 | 12 13 | negsubd | |
| 15 | 14 | oveq1d | |
| 16 | 2 | recnd | |
| 17 | 4 | recnd | |
| 18 | 16 17 | negsubd | |
| 19 | 18 | oveq1d | |
| 20 | 11 15 19 | 3eqtr3d |