This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modnegd.1 | |- ( ph -> A e. RR ) |
|
| modnegd.2 | |- ( ph -> B e. RR ) |
||
| modnegd.3 | |- ( ph -> C e. RR+ ) |
||
| modnegd.4 | |- ( ph -> ( A mod C ) = ( B mod C ) ) |
||
| Assertion | modnegd | |- ( ph -> ( -u A mod C ) = ( -u B mod C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modnegd.1 | |- ( ph -> A e. RR ) |
|
| 2 | modnegd.2 | |- ( ph -> B e. RR ) |
|
| 3 | modnegd.3 | |- ( ph -> C e. RR+ ) |
|
| 4 | modnegd.4 | |- ( ph -> ( A mod C ) = ( B mod C ) ) |
|
| 5 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 6 | 5 | znegcld | |- ( ph -> -u 1 e. ZZ ) |
| 7 | modmul1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( -u 1 e. ZZ /\ C e. RR+ ) /\ ( A mod C ) = ( B mod C ) ) -> ( ( A x. -u 1 ) mod C ) = ( ( B x. -u 1 ) mod C ) ) |
|
| 8 | 1 2 6 3 4 7 | syl221anc | |- ( ph -> ( ( A x. -u 1 ) mod C ) = ( ( B x. -u 1 ) mod C ) ) |
| 9 | 1 | recnd | |- ( ph -> A e. CC ) |
| 10 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 11 | 10 | negcld | |- ( ph -> -u 1 e. CC ) |
| 12 | 9 11 | mulcomd | |- ( ph -> ( A x. -u 1 ) = ( -u 1 x. A ) ) |
| 13 | 9 | mulm1d | |- ( ph -> ( -u 1 x. A ) = -u A ) |
| 14 | 12 13 | eqtrd | |- ( ph -> ( A x. -u 1 ) = -u A ) |
| 15 | 14 | oveq1d | |- ( ph -> ( ( A x. -u 1 ) mod C ) = ( -u A mod C ) ) |
| 16 | 2 | recnd | |- ( ph -> B e. CC ) |
| 17 | 16 11 | mulcomd | |- ( ph -> ( B x. -u 1 ) = ( -u 1 x. B ) ) |
| 18 | 16 | mulm1d | |- ( ph -> ( -u 1 x. B ) = -u B ) |
| 19 | 17 18 | eqtrd | |- ( ph -> ( B x. -u 1 ) = -u B ) |
| 20 | 19 | oveq1d | |- ( ph -> ( ( B x. -u 1 ) mod C ) = ( -u B mod C ) ) |
| 21 | 8 15 20 | 3eqtr3d | |- ( ph -> ( -u A mod C ) = ( -u B mod C ) ) |