This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Additive property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modadd12d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| modadd12d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| modadd12d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| modadd12d.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| modadd12d.5 | ⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) | ||
| modadd12d.6 | ⊢ ( 𝜑 → ( 𝐴 mod 𝐸 ) = ( 𝐵 mod 𝐸 ) ) | ||
| modadd12d.7 | ⊢ ( 𝜑 → ( 𝐶 mod 𝐸 ) = ( 𝐷 mod 𝐸 ) ) | ||
| Assertion | modadd12d | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) mod 𝐸 ) = ( ( 𝐵 + 𝐷 ) mod 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modadd12d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | modadd12d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | modadd12d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | modadd12d.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | modadd12d.5 | ⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) | |
| 6 | modadd12d.6 | ⊢ ( 𝜑 → ( 𝐴 mod 𝐸 ) = ( 𝐵 mod 𝐸 ) ) | |
| 7 | modadd12d.7 | ⊢ ( 𝜑 → ( 𝐶 mod 𝐸 ) = ( 𝐷 mod 𝐸 ) ) | |
| 8 | modadd1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐸 ) = ( 𝐵 mod 𝐸 ) ) → ( ( 𝐴 + 𝐶 ) mod 𝐸 ) = ( ( 𝐵 + 𝐶 ) mod 𝐸 ) ) | |
| 9 | 1 2 3 5 6 8 | syl221anc | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) mod 𝐸 ) = ( ( 𝐵 + 𝐶 ) mod 𝐸 ) ) |
| 10 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 11 | 3 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 12 | 10 11 | addcomd | ⊢ ( 𝜑 → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
| 13 | 12 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) mod 𝐸 ) = ( ( 𝐶 + 𝐵 ) mod 𝐸 ) ) |
| 14 | modadd1 | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝐶 mod 𝐸 ) = ( 𝐷 mod 𝐸 ) ) → ( ( 𝐶 + 𝐵 ) mod 𝐸 ) = ( ( 𝐷 + 𝐵 ) mod 𝐸 ) ) | |
| 15 | 3 4 2 5 7 14 | syl221anc | ⊢ ( 𝜑 → ( ( 𝐶 + 𝐵 ) mod 𝐸 ) = ( ( 𝐷 + 𝐵 ) mod 𝐸 ) ) |
| 16 | 4 | recnd | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 17 | 16 10 | addcomd | ⊢ ( 𝜑 → ( 𝐷 + 𝐵 ) = ( 𝐵 + 𝐷 ) ) |
| 18 | 17 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐷 + 𝐵 ) mod 𝐸 ) = ( ( 𝐵 + 𝐷 ) mod 𝐸 ) ) |
| 19 | 13 15 18 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) mod 𝐸 ) = ( ( 𝐵 + 𝐷 ) mod 𝐸 ) ) |
| 20 | 9 19 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) mod 𝐸 ) = ( ( 𝐵 + 𝐷 ) mod 𝐸 ) ) |