This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mhmima and similar theorems, formerly part of proof for mhmima . (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 16-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmimalem.f | |- ( ph -> F e. ( M MndHom N ) ) |
|
| mhmimalem.s | |- ( ph -> X C_ ( Base ` M ) ) |
||
| mhmimalem.a | |- ( ph -> .(+) = ( +g ` M ) ) |
||
| mhmimalem.p | |- ( ph -> .+ = ( +g ` N ) ) |
||
| mhmimalem.c | |- ( ( ph /\ z e. X /\ x e. X ) -> ( z .(+) x ) e. X ) |
||
| Assertion | mhmimalem | |- ( ph -> A. x e. ( F " X ) A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmimalem.f | |- ( ph -> F e. ( M MndHom N ) ) |
|
| 2 | mhmimalem.s | |- ( ph -> X C_ ( Base ` M ) ) |
|
| 3 | mhmimalem.a | |- ( ph -> .(+) = ( +g ` M ) ) |
|
| 4 | mhmimalem.p | |- ( ph -> .+ = ( +g ` N ) ) |
|
| 5 | mhmimalem.c | |- ( ( ph /\ z e. X /\ x e. X ) -> ( z .(+) x ) e. X ) |
|
| 6 | 1 | adantr | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> F e. ( M MndHom N ) ) |
| 7 | 2 | adantr | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> X C_ ( Base ` M ) ) |
| 8 | simprl | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> z e. X ) |
|
| 9 | 7 8 | sseldd | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> z e. ( Base ` M ) ) |
| 10 | simprr | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> x e. X ) |
|
| 11 | 7 10 | sseldd | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> x e. ( Base ` M ) ) |
| 12 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 13 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 14 | eqid | |- ( +g ` N ) = ( +g ` N ) |
|
| 15 | 12 13 14 | mhmlin | |- ( ( F e. ( M MndHom N ) /\ z e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) |
| 16 | 6 9 11 15 | syl3anc | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) |
| 17 | 3 | oveqd | |- ( ph -> ( z .(+) x ) = ( z ( +g ` M ) x ) ) |
| 18 | 17 | fveq2d | |- ( ph -> ( F ` ( z .(+) x ) ) = ( F ` ( z ( +g ` M ) x ) ) ) |
| 19 | 4 | oveqd | |- ( ph -> ( ( F ` z ) .+ ( F ` x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) |
| 20 | 18 19 | eqeq12d | |- ( ph -> ( ( F ` ( z .(+) x ) ) = ( ( F ` z ) .+ ( F ` x ) ) <-> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) ) |
| 21 | 20 | adantr | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( ( F ` ( z .(+) x ) ) = ( ( F ` z ) .+ ( F ` x ) ) <-> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) ) |
| 22 | 16 21 | mpbird | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z .(+) x ) ) = ( ( F ` z ) .+ ( F ` x ) ) ) |
| 23 | eqid | |- ( Base ` N ) = ( Base ` N ) |
|
| 24 | 12 23 | mhmf | |- ( F e. ( M MndHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 25 | 1 24 | syl | |- ( ph -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 26 | 25 | ffnd | |- ( ph -> F Fn ( Base ` M ) ) |
| 27 | 26 | adantr | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> F Fn ( Base ` M ) ) |
| 28 | 5 | 3expb | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( z .(+) x ) e. X ) |
| 29 | fnfvima | |- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) /\ ( z .(+) x ) e. X ) -> ( F ` ( z .(+) x ) ) e. ( F " X ) ) |
|
| 30 | 27 7 28 29 | syl3anc | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z .(+) x ) ) e. ( F " X ) ) |
| 31 | 22 30 | eqeltrrd | |- ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) |
| 32 | 31 | anassrs | |- ( ( ( ph /\ z e. X ) /\ x e. X ) -> ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) |
| 33 | 32 | ralrimiva | |- ( ( ph /\ z e. X ) -> A. x e. X ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) |
| 34 | oveq2 | |- ( y = ( F ` x ) -> ( ( F ` z ) .+ y ) = ( ( F ` z ) .+ ( F ` x ) ) ) |
|
| 35 | 34 | eleq1d | |- ( y = ( F ` x ) -> ( ( ( F ` z ) .+ y ) e. ( F " X ) <-> ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) ) |
| 36 | 35 | ralima | |- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) ) -> ( A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) ) |
| 37 | 26 2 36 | syl2anc | |- ( ph -> ( A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) ) |
| 38 | 37 | adantr | |- ( ( ph /\ z e. X ) -> ( A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) ) |
| 39 | 33 38 | mpbird | |- ( ( ph /\ z e. X ) -> A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) |
| 40 | 39 | ralrimiva | |- ( ph -> A. z e. X A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) |
| 41 | oveq1 | |- ( x = ( F ` z ) -> ( x .+ y ) = ( ( F ` z ) .+ y ) ) |
|
| 42 | 41 | eleq1d | |- ( x = ( F ` z ) -> ( ( x .+ y ) e. ( F " X ) <-> ( ( F ` z ) .+ y ) e. ( F " X ) ) ) |
| 43 | 42 | ralbidv | |- ( x = ( F ` z ) -> ( A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) <-> A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) ) |
| 44 | 43 | ralima | |- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) ) -> ( A. x e. ( F " X ) A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) <-> A. z e. X A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) ) |
| 45 | 26 2 44 | syl2anc | |- ( ph -> ( A. x e. ( F " X ) A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) <-> A. z e. X A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) ) |
| 46 | 40 45 | mpbird | |- ( ph -> A. x e. ( F " X ) A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) ) |