This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The homomorphic image of a submagma is a submagma. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mgmhmima | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> ( F " X ) e. ( SubMgm ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn | |- ( F " X ) C_ ran F |
|
| 2 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 3 | eqid | |- ( Base ` N ) = ( Base ` N ) |
|
| 4 | 2 3 | mgmhmf | |- ( F e. ( M MgmHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 5 | 4 | adantr | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 6 | 5 | frnd | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> ran F C_ ( Base ` N ) ) |
| 7 | 1 6 | sstrid | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> ( F " X ) C_ ( Base ` N ) ) |
| 8 | simpll | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ ( z e. X /\ x e. X ) ) -> F e. ( M MgmHom N ) ) |
|
| 9 | 2 | submgmss | |- ( X e. ( SubMgm ` M ) -> X C_ ( Base ` M ) ) |
| 10 | 9 | adantl | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> X C_ ( Base ` M ) ) |
| 11 | 10 | adantr | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ ( z e. X /\ x e. X ) ) -> X C_ ( Base ` M ) ) |
| 12 | simprl | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ ( z e. X /\ x e. X ) ) -> z e. X ) |
|
| 13 | 11 12 | sseldd | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ ( z e. X /\ x e. X ) ) -> z e. ( Base ` M ) ) |
| 14 | simprr | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ ( z e. X /\ x e. X ) ) -> x e. X ) |
|
| 15 | 11 14 | sseldd | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ ( z e. X /\ x e. X ) ) -> x e. ( Base ` M ) ) |
| 16 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 17 | eqid | |- ( +g ` N ) = ( +g ` N ) |
|
| 18 | 2 16 17 | mgmhmlin | |- ( ( F e. ( M MgmHom N ) /\ z e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) |
| 19 | 8 13 15 18 | syl3anc | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) |
| 20 | 5 | ffnd | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> F Fn ( Base ` M ) ) |
| 21 | 20 | adantr | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ ( z e. X /\ x e. X ) ) -> F Fn ( Base ` M ) ) |
| 22 | 16 | submgmcl | |- ( ( X e. ( SubMgm ` M ) /\ z e. X /\ x e. X ) -> ( z ( +g ` M ) x ) e. X ) |
| 23 | 22 | 3expb | |- ( ( X e. ( SubMgm ` M ) /\ ( z e. X /\ x e. X ) ) -> ( z ( +g ` M ) x ) e. X ) |
| 24 | 23 | adantll | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ ( z e. X /\ x e. X ) ) -> ( z ( +g ` M ) x ) e. X ) |
| 25 | fnfvima | |- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) /\ ( z ( +g ` M ) x ) e. X ) -> ( F ` ( z ( +g ` M ) x ) ) e. ( F " X ) ) |
|
| 26 | 21 11 24 25 | syl3anc | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z ( +g ` M ) x ) ) e. ( F " X ) ) |
| 27 | 19 26 | eqeltrrd | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ ( z e. X /\ x e. X ) ) -> ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) |
| 28 | 27 | anassrs | |- ( ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ z e. X ) /\ x e. X ) -> ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) |
| 29 | 28 | ralrimiva | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ z e. X ) -> A. x e. X ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) |
| 30 | oveq2 | |- ( y = ( F ` x ) -> ( ( F ` z ) ( +g ` N ) y ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) |
|
| 31 | 30 | eleq1d | |- ( y = ( F ` x ) -> ( ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) <-> ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) ) |
| 32 | 31 | ralima | |- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) ) -> ( A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) ) |
| 33 | 20 10 32 | syl2anc | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> ( A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) ) |
| 34 | 33 | adantr | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ z e. X ) -> ( A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) ) |
| 35 | 29 34 | mpbird | |- ( ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) /\ z e. X ) -> A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) ) |
| 36 | 35 | ralrimiva | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> A. z e. X A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) ) |
| 37 | oveq1 | |- ( x = ( F ` z ) -> ( x ( +g ` N ) y ) = ( ( F ` z ) ( +g ` N ) y ) ) |
|
| 38 | 37 | eleq1d | |- ( x = ( F ` z ) -> ( ( x ( +g ` N ) y ) e. ( F " X ) <-> ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) ) ) |
| 39 | 38 | ralbidv | |- ( x = ( F ` z ) -> ( A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) <-> A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) ) ) |
| 40 | 39 | ralima | |- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) ) -> ( A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) <-> A. z e. X A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) ) ) |
| 41 | 20 10 40 | syl2anc | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> ( A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) <-> A. z e. X A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) ) ) |
| 42 | 36 41 | mpbird | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) ) |
| 43 | mgmhmrcl | |- ( F e. ( M MgmHom N ) -> ( M e. Mgm /\ N e. Mgm ) ) |
|
| 44 | 43 | simprd | |- ( F e. ( M MgmHom N ) -> N e. Mgm ) |
| 45 | 44 | adantr | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> N e. Mgm ) |
| 46 | 3 17 | issubmgm | |- ( N e. Mgm -> ( ( F " X ) e. ( SubMgm ` N ) <-> ( ( F " X ) C_ ( Base ` N ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) ) ) ) |
| 47 | 45 46 | syl | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> ( ( F " X ) e. ( SubMgm ` N ) <-> ( ( F " X ) C_ ( Base ` N ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) ) ) ) |
| 48 | 7 42 47 | mpbir2and | |- ( ( F e. ( M MgmHom N ) /\ X e. ( SubMgm ` M ) ) -> ( F " X ) e. ( SubMgm ` N ) ) |