This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equalizer of two magma homomorphisms is a submagma. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mgmhmeql | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> dom ( F i^i G ) e. ( SubMgm ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 2 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 3 | 1 2 | mgmhmf | |- ( F e. ( S MgmHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 4 | 3 | adantr | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 5 | 4 | ffnd | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> F Fn ( Base ` S ) ) |
| 6 | 1 2 | mgmhmf | |- ( G e. ( S MgmHom T ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
| 7 | 6 | adantl | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
| 8 | 7 | ffnd | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> G Fn ( Base ` S ) ) |
| 9 | fndmin | |- ( ( F Fn ( Base ` S ) /\ G Fn ( Base ` S ) ) -> dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
|
| 10 | 5 8 9 | syl2anc | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
| 11 | ssrab2 | |- { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } C_ ( Base ` S ) |
|
| 12 | 11 | a1i | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } C_ ( Base ` S ) ) |
| 13 | mgmhmrcl | |- ( F e. ( S MgmHom T ) -> ( S e. Mgm /\ T e. Mgm ) ) |
|
| 14 | 13 | simpld | |- ( F e. ( S MgmHom T ) -> S e. Mgm ) |
| 15 | 14 | adantr | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> S e. Mgm ) |
| 16 | 15 | ad2antrr | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> S e. Mgm ) |
| 17 | simplrl | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> x e. ( Base ` S ) ) |
|
| 18 | simprl | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> y e. ( Base ` S ) ) |
|
| 19 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 20 | 1 19 | mgmcl | |- ( ( S e. Mgm /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( +g ` S ) y ) e. ( Base ` S ) ) |
| 21 | 16 17 18 20 | syl3anc | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( x ( +g ` S ) y ) e. ( Base ` S ) ) |
| 22 | simplrr | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` x ) = ( G ` x ) ) |
|
| 23 | simprr | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` y ) = ( G ` y ) ) |
|
| 24 | 22 23 | oveq12d | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( G ` x ) ( +g ` T ) ( G ` y ) ) ) |
| 25 | simplll | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> F e. ( S MgmHom T ) ) |
|
| 26 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 27 | 1 19 26 | mgmhmlin | |- ( ( F e. ( S MgmHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 28 | 25 17 18 27 | syl3anc | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 29 | simpllr | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> G e. ( S MgmHom T ) ) |
|
| 30 | 1 19 26 | mgmhmlin | |- ( ( G e. ( S MgmHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( G ` ( x ( +g ` S ) y ) ) = ( ( G ` x ) ( +g ` T ) ( G ` y ) ) ) |
| 31 | 29 17 18 30 | syl3anc | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( G ` ( x ( +g ` S ) y ) ) = ( ( G ` x ) ( +g ` T ) ( G ` y ) ) ) |
| 32 | 24 28 31 | 3eqtr4d | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( G ` ( x ( +g ` S ) y ) ) ) |
| 33 | fveq2 | |- ( z = ( x ( +g ` S ) y ) -> ( F ` z ) = ( F ` ( x ( +g ` S ) y ) ) ) |
|
| 34 | fveq2 | |- ( z = ( x ( +g ` S ) y ) -> ( G ` z ) = ( G ` ( x ( +g ` S ) y ) ) ) |
|
| 35 | 33 34 | eqeq12d | |- ( z = ( x ( +g ` S ) y ) -> ( ( F ` z ) = ( G ` z ) <-> ( F ` ( x ( +g ` S ) y ) ) = ( G ` ( x ( +g ` S ) y ) ) ) ) |
| 36 | 35 | elrab | |- ( ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } <-> ( ( x ( +g ` S ) y ) e. ( Base ` S ) /\ ( F ` ( x ( +g ` S ) y ) ) = ( G ` ( x ( +g ` S ) y ) ) ) ) |
| 37 | 21 32 36 | sylanbrc | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
| 38 | 37 | expr | |- ( ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) = ( G ` y ) -> ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 39 | 38 | ralrimiva | |- ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 40 | fveq2 | |- ( z = y -> ( F ` z ) = ( F ` y ) ) |
|
| 41 | fveq2 | |- ( z = y -> ( G ` z ) = ( G ` y ) ) |
|
| 42 | 40 41 | eqeq12d | |- ( z = y -> ( ( F ` z ) = ( G ` z ) <-> ( F ` y ) = ( G ` y ) ) ) |
| 43 | 42 | ralrab | |- ( A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } <-> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 44 | 39 43 | sylibr | |- ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
| 45 | 44 | expr | |- ( ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) /\ x e. ( Base ` S ) ) -> ( ( F ` x ) = ( G ` x ) -> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 46 | 45 | ralrimiva | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> A. x e. ( Base ` S ) ( ( F ` x ) = ( G ` x ) -> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 47 | fveq2 | |- ( z = x -> ( F ` z ) = ( F ` x ) ) |
|
| 48 | fveq2 | |- ( z = x -> ( G ` z ) = ( G ` x ) ) |
|
| 49 | 47 48 | eqeq12d | |- ( z = x -> ( ( F ` z ) = ( G ` z ) <-> ( F ` x ) = ( G ` x ) ) ) |
| 50 | 49 | ralrab | |- ( A. x e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } <-> A. x e. ( Base ` S ) ( ( F ` x ) = ( G ` x ) -> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 51 | 46 50 | sylibr | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> A. x e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
| 52 | 1 19 | issubmgm | |- ( S e. Mgm -> ( { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } e. ( SubMgm ` S ) <-> ( { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } C_ ( Base ` S ) /\ A. x e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) ) |
| 53 | 15 52 | syl | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> ( { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } e. ( SubMgm ` S ) <-> ( { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } C_ ( Base ` S ) /\ A. x e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) ) |
| 54 | 12 51 53 | mpbir2and | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } e. ( SubMgm ` S ) ) |
| 55 | 10 54 | eqeltrd | |- ( ( F e. ( S MgmHom T ) /\ G e. ( S MgmHom T ) ) -> dom ( F i^i G ) e. ( SubMgm ` S ) ) |