This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submagmas are closed under the magma operation. (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submgmcl.p | |- .+ = ( +g ` M ) |
|
| Assertion | submgmcl | |- ( ( S e. ( SubMgm ` M ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submgmcl.p | |- .+ = ( +g ` M ) |
|
| 2 | submgmrcl | |- ( S e. ( SubMgm ` M ) -> M e. Mgm ) |
|
| 3 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 4 | 3 1 | issubmgm | |- ( M e. Mgm -> ( S e. ( SubMgm ` M ) <-> ( S C_ ( Base ` M ) /\ A. x e. S A. y e. S ( x .+ y ) e. S ) ) ) |
| 5 | 2 4 | syl | |- ( S e. ( SubMgm ` M ) -> ( S e. ( SubMgm ` M ) <-> ( S C_ ( Base ` M ) /\ A. x e. S A. y e. S ( x .+ y ) e. S ) ) ) |
| 6 | 5 | ibi | |- ( S e. ( SubMgm ` M ) -> ( S C_ ( Base ` M ) /\ A. x e. S A. y e. S ( x .+ y ) e. S ) ) |
| 7 | 6 | simprd | |- ( S e. ( SubMgm ` M ) -> A. x e. S A. y e. S ( x .+ y ) e. S ) |
| 8 | ovrspc2v | |- ( ( ( X e. S /\ Y e. S ) /\ A. x e. S A. y e. S ( x .+ y ) e. S ) -> ( X .+ Y ) e. S ) |
|
| 9 | 7 8 | sylan2 | |- ( ( ( X e. S /\ Y e. S ) /\ S e. ( SubMgm ` M ) ) -> ( X .+ Y ) e. S ) |
| 10 | 9 | ancoms | |- ( ( S e. ( SubMgm ` M ) /\ ( X e. S /\ Y e. S ) ) -> ( X .+ Y ) e. S ) |
| 11 | 10 | 3impb | |- ( ( S e. ( SubMgm ` M ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) e. S ) |