This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgmhmf.b | |- B = ( Base ` S ) |
|
| mgmhmf.c | |- C = ( Base ` T ) |
||
| Assertion | mgmhmf | |- ( F e. ( S MgmHom T ) -> F : B --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmhmf.b | |- B = ( Base ` S ) |
|
| 2 | mgmhmf.c | |- C = ( Base ` T ) |
|
| 3 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 4 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 5 | 1 2 3 4 | ismgmhm | |- ( F e. ( S MgmHom T ) <-> ( ( S e. Mgm /\ T e. Mgm ) /\ ( F : B --> C /\ A. x e. B A. y e. B ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) ) ) |
| 6 | simprl | |- ( ( ( S e. Mgm /\ T e. Mgm ) /\ ( F : B --> C /\ A. x e. B A. y e. B ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) ) -> F : B --> C ) |
|
| 7 | 5 6 | sylbi | |- ( F e. ( S MgmHom T ) -> F : B --> C ) |