This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "section" image of an entourage at a point P always contains a ball (centered on this point). (Contributed by Thierry Arnoux, 8-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metustbl | |- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> E. a e. ran ( ball ` D ) ( P e. a /\ a C_ ( V " { P } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> D e. ( PsMet ` X ) ) |
|
| 2 | simp3 | |- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> P e. X ) |
|
| 3 | simpr | |- ( ( ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) /\ w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) ) /\ w C_ V ) -> w C_ V ) |
|
| 4 | eqid | |- ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) = ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) |
|
| 5 | 4 | elrnmpt | |- ( w e. _V -> ( w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) <-> E. r e. RR+ w = ( `' D " ( 0 [,) r ) ) ) ) |
| 6 | 5 | elv | |- ( w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) <-> E. r e. RR+ w = ( `' D " ( 0 [,) r ) ) ) |
| 7 | 6 | biimpi | |- ( w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) -> E. r e. RR+ w = ( `' D " ( 0 [,) r ) ) ) |
| 8 | 7 | ad2antlr | |- ( ( ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) /\ w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) ) /\ w C_ V ) -> E. r e. RR+ w = ( `' D " ( 0 [,) r ) ) ) |
| 9 | sseq1 | |- ( w = ( `' D " ( 0 [,) r ) ) -> ( w C_ V <-> ( `' D " ( 0 [,) r ) ) C_ V ) ) |
|
| 10 | 9 | biimpcd | |- ( w C_ V -> ( w = ( `' D " ( 0 [,) r ) ) -> ( `' D " ( 0 [,) r ) ) C_ V ) ) |
| 11 | 10 | reximdv | |- ( w C_ V -> ( E. r e. RR+ w = ( `' D " ( 0 [,) r ) ) -> E. r e. RR+ ( `' D " ( 0 [,) r ) ) C_ V ) ) |
| 12 | 3 8 11 | sylc | |- ( ( ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) /\ w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) ) /\ w C_ V ) -> E. r e. RR+ ( `' D " ( 0 [,) r ) ) C_ V ) |
| 13 | 2 | ne0d | |- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> X =/= (/) ) |
| 14 | simp2 | |- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> V e. ( metUnif ` D ) ) |
|
| 15 | metuel | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( metUnif ` D ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) w C_ V ) ) ) |
|
| 16 | 15 | simplbda | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ V e. ( metUnif ` D ) ) -> E. w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) w C_ V ) |
| 17 | 13 1 14 16 | syl21anc | |- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> E. w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) w C_ V ) |
| 18 | 12 17 | r19.29a | |- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> E. r e. RR+ ( `' D " ( 0 [,) r ) ) C_ V ) |
| 19 | imass1 | |- ( ( `' D " ( 0 [,) r ) ) C_ V -> ( ( `' D " ( 0 [,) r ) ) " { P } ) C_ ( V " { P } ) ) |
|
| 20 | 19 | reximi | |- ( E. r e. RR+ ( `' D " ( 0 [,) r ) ) C_ V -> E. r e. RR+ ( ( `' D " ( 0 [,) r ) ) " { P } ) C_ ( V " { P } ) ) |
| 21 | blval2 | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ r e. RR+ ) -> ( P ( ball ` D ) r ) = ( ( `' D " ( 0 [,) r ) ) " { P } ) ) |
|
| 22 | 21 | sseq1d | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ r e. RR+ ) -> ( ( P ( ball ` D ) r ) C_ ( V " { P } ) <-> ( ( `' D " ( 0 [,) r ) ) " { P } ) C_ ( V " { P } ) ) ) |
| 23 | 22 | 3expa | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ r e. RR+ ) -> ( ( P ( ball ` D ) r ) C_ ( V " { P } ) <-> ( ( `' D " ( 0 [,) r ) ) " { P } ) C_ ( V " { P } ) ) ) |
| 24 | 23 | rexbidva | |- ( ( D e. ( PsMet ` X ) /\ P e. X ) -> ( E. r e. RR+ ( P ( ball ` D ) r ) C_ ( V " { P } ) <-> E. r e. RR+ ( ( `' D " ( 0 [,) r ) ) " { P } ) C_ ( V " { P } ) ) ) |
| 25 | 20 24 | imbitrrid | |- ( ( D e. ( PsMet ` X ) /\ P e. X ) -> ( E. r e. RR+ ( `' D " ( 0 [,) r ) ) C_ V -> E. r e. RR+ ( P ( ball ` D ) r ) C_ ( V " { P } ) ) ) |
| 26 | 25 | imp | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ E. r e. RR+ ( `' D " ( 0 [,) r ) ) C_ V ) -> E. r e. RR+ ( P ( ball ` D ) r ) C_ ( V " { P } ) ) |
| 27 | 1 2 18 26 | syl21anc | |- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> E. r e. RR+ ( P ( ball ` D ) r ) C_ ( V " { P } ) ) |
| 28 | blssexps | |- ( ( D e. ( PsMet ` X ) /\ P e. X ) -> ( E. a e. ran ( ball ` D ) ( P e. a /\ a C_ ( V " { P } ) ) <-> E. r e. RR+ ( P ( ball ` D ) r ) C_ ( V " { P } ) ) ) |
|
| 29 | 28 | 3adant2 | |- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> ( E. a e. ran ( ball ` D ) ( P e. a /\ a C_ ( V " { P } ) ) <-> E. r e. RR+ ( P ( ball ` D ) r ) C_ ( V " { P } ) ) ) |
| 30 | 27 29 | mpbird | |- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> E. a e. ran ( ball ` D ) ( P e. a /\ a C_ ( V " { P } ) ) ) |