This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by Mario Carneiro, 20-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralxfr2d.1 | |- ( ( ph /\ y e. C ) -> A e. V ) |
|
| ralxfr2d.2 | |- ( ph -> ( x e. B <-> E. y e. C x = A ) ) |
||
| ralxfr2d.3 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
||
| Assertion | ralxfr2d | |- ( ph -> ( A. x e. B ps <-> A. y e. C ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfr2d.1 | |- ( ( ph /\ y e. C ) -> A e. V ) |
|
| 2 | ralxfr2d.2 | |- ( ph -> ( x e. B <-> E. y e. C x = A ) ) |
|
| 3 | ralxfr2d.3 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
| 4 | elisset | |- ( A e. V -> E. x x = A ) |
|
| 5 | 1 4 | syl | |- ( ( ph /\ y e. C ) -> E. x x = A ) |
| 6 | 2 | biimprd | |- ( ph -> ( E. y e. C x = A -> x e. B ) ) |
| 7 | r19.23v | |- ( A. y e. C ( x = A -> x e. B ) <-> ( E. y e. C x = A -> x e. B ) ) |
|
| 8 | 6 7 | sylibr | |- ( ph -> A. y e. C ( x = A -> x e. B ) ) |
| 9 | 8 | r19.21bi | |- ( ( ph /\ y e. C ) -> ( x = A -> x e. B ) ) |
| 10 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 11 | 9 10 | mpbidi | |- ( ( ph /\ y e. C ) -> ( x = A -> A e. B ) ) |
| 12 | 11 | exlimdv | |- ( ( ph /\ y e. C ) -> ( E. x x = A -> A e. B ) ) |
| 13 | 5 12 | mpd | |- ( ( ph /\ y e. C ) -> A e. B ) |
| 14 | 2 | biimpa | |- ( ( ph /\ x e. B ) -> E. y e. C x = A ) |
| 15 | 13 14 3 | ralxfrd | |- ( ph -> ( A. x e. B ps <-> A. y e. C ch ) ) |