This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Together with disjlem19 , this is former prtlem19 . (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 21-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | membpartlem19 | |- ( B e. V -> ( MembPart A -> ( ( u e. A /\ B e. u ) -> u = [ B ] ~ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmembpart2 | |- ( MembPart A <-> ( ElDisj A /\ -. (/) e. A ) ) |
|
| 2 | n0el2 | |- ( -. (/) e. A <-> dom ( `' _E |` A ) = A ) |
|
| 3 | 2 | biimpi | |- ( -. (/) e. A -> dom ( `' _E |` A ) = A ) |
| 4 | 3 | ad2antll | |- ( ( B e. V /\ ( ElDisj A /\ -. (/) e. A ) ) -> dom ( `' _E |` A ) = A ) |
| 5 | 4 | eleq2d | |- ( ( B e. V /\ ( ElDisj A /\ -. (/) e. A ) ) -> ( u e. dom ( `' _E |` A ) <-> u e. A ) ) |
| 6 | eldisjlem19 | |- ( B e. V -> ( ElDisj A -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) ) |
|
| 7 | 6 | adantrd | |- ( B e. V -> ( ( ElDisj A /\ -. (/) e. A ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) ) |
| 8 | 7 | imp | |- ( ( B e. V /\ ( ElDisj A /\ -. (/) e. A ) ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) |
| 9 | 8 | expd | |- ( ( B e. V /\ ( ElDisj A /\ -. (/) e. A ) ) -> ( u e. dom ( `' _E |` A ) -> ( B e. u -> u = [ B ] ~ A ) ) ) |
| 10 | 5 9 | sylbird | |- ( ( B e. V /\ ( ElDisj A /\ -. (/) e. A ) ) -> ( u e. A -> ( B e. u -> u = [ B ] ~ A ) ) ) |
| 11 | 1 10 | sylan2b | |- ( ( B e. V /\ MembPart A ) -> ( u e. A -> ( B e. u -> u = [ B ] ~ A ) ) ) |
| 12 | 11 | impd | |- ( ( B e. V /\ MembPart A ) -> ( ( u e. A /\ B e. u ) -> u = [ B ] ~ A ) ) |
| 13 | 12 | ex | |- ( B e. V -> ( MembPart A -> ( ( u e. A /\ B e. u ) -> u = [ B ] ~ A ) ) ) |