This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of disjlem19 (together with membpartlem19 , this is former prtlem19 ). (Contributed by Peter Mazsa, 21-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldisjlem19 | |- ( B e. V -> ( ElDisj A -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eldisj | |- ( ElDisj A <-> Disj ( `' _E |` A ) ) |
|
| 2 | disjlem19 | |- ( B e. V -> ( Disj ( `' _E |` A ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. [ u ] ( `' _E |` A ) ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) ) ) |
|
| 3 | 1 2 | biimtrid | |- ( B e. V -> ( ElDisj A -> ( ( u e. dom ( `' _E |` A ) /\ B e. [ u ] ( `' _E |` A ) ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) ) ) |
| 4 | 3 | imp | |- ( ( B e. V /\ ElDisj A ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. [ u ] ( `' _E |` A ) ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) ) |
| 5 | 4 | expdimp | |- ( ( ( B e. V /\ ElDisj A ) /\ u e. dom ( `' _E |` A ) ) -> ( B e. [ u ] ( `' _E |` A ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) ) |
| 6 | eccnvepres3 | |- ( u e. dom ( `' _E |` A ) -> [ u ] ( `' _E |` A ) = u ) |
|
| 7 | 6 | eleq2d | |- ( u e. dom ( `' _E |` A ) -> ( B e. [ u ] ( `' _E |` A ) <-> B e. u ) ) |
| 8 | 6 | eqeq1d | |- ( u e. dom ( `' _E |` A ) -> ( [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) <-> u = [ B ] ,~ ( `' _E |` A ) ) ) |
| 9 | 7 8 | imbi12d | |- ( u e. dom ( `' _E |` A ) -> ( ( B e. [ u ] ( `' _E |` A ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) <-> ( B e. u -> u = [ B ] ,~ ( `' _E |` A ) ) ) ) |
| 10 | 9 | adantl | |- ( ( ( B e. V /\ ElDisj A ) /\ u e. dom ( `' _E |` A ) ) -> ( ( B e. [ u ] ( `' _E |` A ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) <-> ( B e. u -> u = [ B ] ,~ ( `' _E |` A ) ) ) ) |
| 11 | 5 10 | mpbid | |- ( ( ( B e. V /\ ElDisj A ) /\ u e. dom ( `' _E |` A ) ) -> ( B e. u -> u = [ B ] ,~ ( `' _E |` A ) ) ) |
| 12 | df-coels | |- ~ A = ,~ ( `' _E |` A ) |
|
| 13 | 12 | eceq2i | |- [ B ] ~ A = [ B ] ,~ ( `' _E |` A ) |
| 14 | 13 | eqeq2i | |- ( u = [ B ] ~ A <-> u = [ B ] ,~ ( `' _E |` A ) ) |
| 15 | 11 14 | imbitrrdi | |- ( ( ( B e. V /\ ElDisj A ) /\ u e. dom ( `' _E |` A ) ) -> ( B e. u -> u = [ B ] ~ A ) ) |
| 16 | 15 | expimpd | |- ( ( B e. V /\ ElDisj A ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) |
| 17 | 16 | ex | |- ( B e. V -> ( ElDisj A -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) ) |