This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prter2 . (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prtlem18.1 | |- .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
|
| Assertion | prtlem19 | |- ( Prt A -> ( ( v e. A /\ z e. v ) -> v = [ z ] .~ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem18.1 | |- .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
|
| 2 | 1 | prtlem18 | |- ( Prt A -> ( ( v e. A /\ z e. v ) -> ( w e. v <-> z .~ w ) ) ) |
| 3 | 2 | imp | |- ( ( Prt A /\ ( v e. A /\ z e. v ) ) -> ( w e. v <-> z .~ w ) ) |
| 4 | vex | |- w e. _V |
|
| 5 | vex | |- z e. _V |
|
| 6 | 4 5 | elec | |- ( w e. [ z ] .~ <-> z .~ w ) |
| 7 | 3 6 | bitr4di | |- ( ( Prt A /\ ( v e. A /\ z e. v ) ) -> ( w e. v <-> w e. [ z ] .~ ) ) |
| 8 | 7 | eqrdv | |- ( ( Prt A /\ ( v e. A /\ z e. v ) ) -> v = [ z ] .~ ) |
| 9 | 8 | ex | |- ( Prt A -> ( ( v e. A /\ z e. v ) -> v = [ z ] .~ ) ) |