This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Together with disjlem19 , this is former prtlem19 . (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 21-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | membpartlem19 | ⊢ ( 𝐵 ∈ 𝑉 → ( MembPart 𝐴 → ( ( 𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmembpart2 | ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) | |
| 2 | n0el2 | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ dom ( ◡ E ↾ 𝐴 ) = 𝐴 ) | |
| 3 | 2 | biimpi | ⊢ ( ¬ ∅ ∈ 𝐴 → dom ( ◡ E ↾ 𝐴 ) = 𝐴 ) |
| 4 | 3 | ad2antll | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) → dom ( ◡ E ↾ 𝐴 ) = 𝐴 ) |
| 5 | 4 | eleq2d | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) → ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ↔ 𝑢 ∈ 𝐴 ) ) |
| 6 | eldisjlem19 | ⊢ ( 𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) | |
| 7 | 6 | adantrd | ⊢ ( 𝐵 ∈ 𝑉 → ( ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |
| 8 | 7 | imp | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) |
| 9 | 8 | expd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) → ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) → ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |
| 10 | 5 9 | sylbird | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) → ( 𝑢 ∈ 𝐴 → ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |
| 11 | 1 10 | sylan2b | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ MembPart 𝐴 ) → ( 𝑢 ∈ 𝐴 → ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |
| 12 | 11 | impd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ MembPart 𝐴 ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) |
| 13 | 12 | ex | ⊢ ( 𝐵 ∈ 𝑉 → ( MembPart 𝐴 → ( ( 𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |