This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for disjdmqseq , partim2 and petlem via disjdmqs , (general version of the former prtlem19 ). (Contributed by Peter Mazsa, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjlem19 | |- ( A e. V -> ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> [ x ] R = [ A ] ,~ R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjlem18 | |- ( ( A e. V /\ z e. _V ) -> ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( z e. [ x ] R <-> A ,~ R z ) ) ) ) |
|
| 2 | 1 | elvd | |- ( A e. V -> ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( z e. [ x ] R <-> A ,~ R z ) ) ) ) |
| 3 | 2 | imp31 | |- ( ( ( A e. V /\ Disj R ) /\ ( x e. dom R /\ A e. [ x ] R ) ) -> ( z e. [ x ] R <-> A ,~ R z ) ) |
| 4 | elecALTV | |- ( ( A e. V /\ z e. _V ) -> ( z e. [ A ] ,~ R <-> A ,~ R z ) ) |
|
| 5 | 4 | elvd | |- ( A e. V -> ( z e. [ A ] ,~ R <-> A ,~ R z ) ) |
| 6 | 5 | ad2antrr | |- ( ( ( A e. V /\ Disj R ) /\ ( x e. dom R /\ A e. [ x ] R ) ) -> ( z e. [ A ] ,~ R <-> A ,~ R z ) ) |
| 7 | 3 6 | bitr4d | |- ( ( ( A e. V /\ Disj R ) /\ ( x e. dom R /\ A e. [ x ] R ) ) -> ( z e. [ x ] R <-> z e. [ A ] ,~ R ) ) |
| 8 | 7 | eqrdv | |- ( ( ( A e. V /\ Disj R ) /\ ( x e. dom R /\ A e. [ x ] R ) ) -> [ x ] R = [ A ] ,~ R ) |
| 9 | 8 | exp31 | |- ( A e. V -> ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> [ x ] R = [ A ] ,~ R ) ) ) |