This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the conventional membership case of partition. Partition A of X , Halmos p. 28: "A partition of X is a disjoint collection A of non-empty subsets of X whose union is X ", or Definition 35, Suppes p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfmembpart2 | |- ( MembPart A <-> ( ElDisj A /\ -. (/) e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-membpart | |- ( MembPart A <-> ( `' _E |` A ) Part A ) |
|
| 2 | df-part | |- ( ( `' _E |` A ) Part A <-> ( Disj ( `' _E |` A ) /\ ( `' _E |` A ) DomainQs A ) ) |
|
| 3 | df-eldisj | |- ( ElDisj A <-> Disj ( `' _E |` A ) ) |
|
| 4 | 3 | bicomi | |- ( Disj ( `' _E |` A ) <-> ElDisj A ) |
| 5 | cnvepresdmqs | |- ( ( `' _E |` A ) DomainQs A <-> -. (/) e. A ) |
|
| 6 | 4 5 | anbi12i | |- ( ( Disj ( `' _E |` A ) /\ ( `' _E |` A ) DomainQs A ) <-> ( ElDisj A /\ -. (/) e. A ) ) |
| 7 | 1 2 6 | 3bitri | |- ( MembPart A <-> ( ElDisj A /\ -. (/) e. A ) ) |