This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of any open set (in the complex topology) under a measurable function is measurable. (See also cncombf , which explains why A e. dom vol is too weak a condition for this theorem.) (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mbfimaopn.1 | |- J = ( TopOpen ` CCfld ) |
|
| Assertion | mbfimaopn | |- ( ( F e. MblFn /\ A e. J ) -> ( `' F " A ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfimaopn.1 | |- J = ( TopOpen ` CCfld ) |
|
| 2 | oveq1 | |- ( t = x -> ( t + ( _i x. w ) ) = ( x + ( _i x. w ) ) ) |
|
| 3 | oveq2 | |- ( w = y -> ( _i x. w ) = ( _i x. y ) ) |
|
| 4 | 3 | oveq2d | |- ( w = y -> ( x + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) |
| 5 | 2 4 | cbvmpov | |- ( t e. RR , w e. RR |-> ( t + ( _i x. w ) ) ) = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
| 6 | eqid | |- ( (,) " ( QQ X. QQ ) ) = ( (,) " ( QQ X. QQ ) ) |
|
| 7 | eqid | |- ran ( x e. ( (,) " ( QQ X. QQ ) ) , y e. ( (,) " ( QQ X. QQ ) ) |-> ( x X. y ) ) = ran ( x e. ( (,) " ( QQ X. QQ ) ) , y e. ( (,) " ( QQ X. QQ ) ) |-> ( x X. y ) ) |
|
| 8 | 1 5 6 7 | mbfimaopnlem | |- ( ( F e. MblFn /\ A e. J ) -> ( `' F " A ) e. dom vol ) |