This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matplusgcell.a | |- A = ( N Mat R ) |
|
| matplusgcell.b | |- B = ( Base ` A ) |
||
| matplusgcell.p | |- .+b = ( +g ` A ) |
||
| matplusgcell.q | |- .+ = ( +g ` R ) |
||
| Assertion | matplusgcell | |- ( ( ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X .+b Y ) J ) = ( ( I X J ) .+ ( I Y J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matplusgcell.a | |- A = ( N Mat R ) |
|
| 2 | matplusgcell.b | |- B = ( Base ` A ) |
|
| 3 | matplusgcell.p | |- .+b = ( +g ` A ) |
|
| 4 | matplusgcell.q | |- .+ = ( +g ` R ) |
|
| 5 | 1 2 3 4 | matplusg2 | |- ( ( X e. B /\ Y e. B ) -> ( X .+b Y ) = ( X oF .+ Y ) ) |
| 6 | 5 | oveqd | |- ( ( X e. B /\ Y e. B ) -> ( I ( X .+b Y ) J ) = ( I ( X oF .+ Y ) J ) ) |
| 7 | 6 | adantr | |- ( ( ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X .+b Y ) J ) = ( I ( X oF .+ Y ) J ) ) |
| 8 | df-ov | |- ( I ( X oF .+ Y ) J ) = ( ( X oF .+ Y ) ` <. I , J >. ) |
|
| 9 | 8 | a1i | |- ( ( ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X oF .+ Y ) J ) = ( ( X oF .+ Y ) ` <. I , J >. ) ) |
| 10 | opelxp | |- ( <. I , J >. e. ( N X. N ) <-> ( I e. N /\ J e. N ) ) |
|
| 11 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 12 | 1 11 2 | matbas2i | |- ( X e. B -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 13 | elmapfn | |- ( X e. ( ( Base ` R ) ^m ( N X. N ) ) -> X Fn ( N X. N ) ) |
|
| 14 | 12 13 | syl | |- ( X e. B -> X Fn ( N X. N ) ) |
| 15 | 14 | adantr | |- ( ( X e. B /\ Y e. B ) -> X Fn ( N X. N ) ) |
| 16 | 1 11 2 | matbas2i | |- ( Y e. B -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 17 | elmapfn | |- ( Y e. ( ( Base ` R ) ^m ( N X. N ) ) -> Y Fn ( N X. N ) ) |
|
| 18 | 16 17 | syl | |- ( Y e. B -> Y Fn ( N X. N ) ) |
| 19 | 18 | adantl | |- ( ( X e. B /\ Y e. B ) -> Y Fn ( N X. N ) ) |
| 20 | 1 2 | matrcl | |- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
| 21 | xpfi | |- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
|
| 22 | 21 | anidms | |- ( N e. Fin -> ( N X. N ) e. Fin ) |
| 23 | 22 | adantr | |- ( ( N e. Fin /\ R e. _V ) -> ( N X. N ) e. Fin ) |
| 24 | 20 23 | syl | |- ( X e. B -> ( N X. N ) e. Fin ) |
| 25 | 24 | adantr | |- ( ( X e. B /\ Y e. B ) -> ( N X. N ) e. Fin ) |
| 26 | inidm | |- ( ( N X. N ) i^i ( N X. N ) ) = ( N X. N ) |
|
| 27 | df-ov | |- ( I X J ) = ( X ` <. I , J >. ) |
|
| 28 | 27 | eqcomi | |- ( X ` <. I , J >. ) = ( I X J ) |
| 29 | 28 | a1i | |- ( ( ( X e. B /\ Y e. B ) /\ <. I , J >. e. ( N X. N ) ) -> ( X ` <. I , J >. ) = ( I X J ) ) |
| 30 | df-ov | |- ( I Y J ) = ( Y ` <. I , J >. ) |
|
| 31 | 30 | eqcomi | |- ( Y ` <. I , J >. ) = ( I Y J ) |
| 32 | 31 | a1i | |- ( ( ( X e. B /\ Y e. B ) /\ <. I , J >. e. ( N X. N ) ) -> ( Y ` <. I , J >. ) = ( I Y J ) ) |
| 33 | 15 19 25 25 26 29 32 | ofval | |- ( ( ( X e. B /\ Y e. B ) /\ <. I , J >. e. ( N X. N ) ) -> ( ( X oF .+ Y ) ` <. I , J >. ) = ( ( I X J ) .+ ( I Y J ) ) ) |
| 34 | 10 33 | sylan2br | |- ( ( ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( ( X oF .+ Y ) ` <. I , J >. ) = ( ( I X J ) .+ ( I Y J ) ) ) |
| 35 | 7 9 34 | 3eqtrd | |- ( ( ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X .+b Y ) J ) = ( ( I X J ) .+ ( I Y J ) ) ) |