This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matplusgcell.a | |- A = ( N Mat R ) |
|
| matplusgcell.b | |- B = ( Base ` A ) |
||
| matsubgcell.s | |- S = ( -g ` A ) |
||
| matsubgcell.m | |- .- = ( -g ` R ) |
||
| Assertion | matsubgcell | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X S Y ) J ) = ( ( I X J ) .- ( I Y J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matplusgcell.a | |- A = ( N Mat R ) |
|
| 2 | matplusgcell.b | |- B = ( Base ` A ) |
|
| 3 | matsubgcell.s | |- S = ( -g ` A ) |
|
| 4 | matsubgcell.m | |- .- = ( -g ` R ) |
|
| 5 | 1 2 | matrcl | |- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
| 6 | 5 | simpld | |- ( X e. B -> N e. Fin ) |
| 7 | 6 | adantr | |- ( ( X e. B /\ Y e. B ) -> N e. Fin ) |
| 8 | 7 | 3ad2ant2 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> N e. Fin ) |
| 9 | simp1 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> R e. Ring ) |
|
| 10 | eqid | |- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
|
| 11 | 1 10 | matsubg | |- ( ( N e. Fin /\ R e. Ring ) -> ( -g ` ( R freeLMod ( N X. N ) ) ) = ( -g ` A ) ) |
| 12 | 8 9 11 | syl2anc | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( -g ` ( R freeLMod ( N X. N ) ) ) = ( -g ` A ) ) |
| 13 | 3 12 | eqtr4id | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> S = ( -g ` ( R freeLMod ( N X. N ) ) ) ) |
| 14 | 13 | oveqd | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( X S Y ) = ( X ( -g ` ( R freeLMod ( N X. N ) ) ) Y ) ) |
| 15 | eqid | |- ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) |
|
| 16 | xpfi | |- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
|
| 17 | 16 | anidms | |- ( N e. Fin -> ( N X. N ) e. Fin ) |
| 18 | 17 | adantr | |- ( ( N e. Fin /\ R e. _V ) -> ( N X. N ) e. Fin ) |
| 19 | 5 18 | syl | |- ( X e. B -> ( N X. N ) e. Fin ) |
| 20 | 19 | adantr | |- ( ( X e. B /\ Y e. B ) -> ( N X. N ) e. Fin ) |
| 21 | 20 | 3ad2ant2 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( N X. N ) e. Fin ) |
| 22 | 2 | eleq2i | |- ( X e. B <-> X e. ( Base ` A ) ) |
| 23 | 22 | biimpi | |- ( X e. B -> X e. ( Base ` A ) ) |
| 24 | 1 10 | matbas | |- ( ( N e. Fin /\ R e. _V ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 25 | 5 24 | syl | |- ( X e. B -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 26 | 23 25 | eleqtrrd | |- ( X e. B -> X e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 27 | 26 | adantr | |- ( ( X e. B /\ Y e. B ) -> X e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 28 | 27 | 3ad2ant2 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> X e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 29 | 2 | eleq2i | |- ( Y e. B <-> Y e. ( Base ` A ) ) |
| 30 | 29 | biimpi | |- ( Y e. B -> Y e. ( Base ` A ) ) |
| 31 | 1 2 | matrcl | |- ( Y e. B -> ( N e. Fin /\ R e. _V ) ) |
| 32 | 31 24 | syl | |- ( Y e. B -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 33 | 30 32 | eleqtrrd | |- ( Y e. B -> Y e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 34 | 33 | adantl | |- ( ( X e. B /\ Y e. B ) -> Y e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 35 | 34 | 3ad2ant2 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> Y e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 36 | eqid | |- ( -g ` ( R freeLMod ( N X. N ) ) ) = ( -g ` ( R freeLMod ( N X. N ) ) ) |
|
| 37 | 10 15 9 21 28 35 4 36 | frlmsubgval | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( X ( -g ` ( R freeLMod ( N X. N ) ) ) Y ) = ( X oF .- Y ) ) |
| 38 | 14 37 | eqtrd | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( X S Y ) = ( X oF .- Y ) ) |
| 39 | 38 | oveqd | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X S Y ) J ) = ( I ( X oF .- Y ) J ) ) |
| 40 | df-ov | |- ( I ( X oF .- Y ) J ) = ( ( X oF .- Y ) ` <. I , J >. ) |
|
| 41 | opelxpi | |- ( ( I e. N /\ J e. N ) -> <. I , J >. e. ( N X. N ) ) |
|
| 42 | 41 | anim2i | |- ( ( ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( ( X e. B /\ Y e. B ) /\ <. I , J >. e. ( N X. N ) ) ) |
| 43 | 42 | 3adant1 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( ( X e. B /\ Y e. B ) /\ <. I , J >. e. ( N X. N ) ) ) |
| 44 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 45 | 1 44 2 | matbas2i | |- ( X e. B -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 46 | elmapfn | |- ( X e. ( ( Base ` R ) ^m ( N X. N ) ) -> X Fn ( N X. N ) ) |
|
| 47 | 45 46 | syl | |- ( X e. B -> X Fn ( N X. N ) ) |
| 48 | 47 | adantr | |- ( ( X e. B /\ Y e. B ) -> X Fn ( N X. N ) ) |
| 49 | 1 44 2 | matbas2i | |- ( Y e. B -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 50 | elmapfn | |- ( Y e. ( ( Base ` R ) ^m ( N X. N ) ) -> Y Fn ( N X. N ) ) |
|
| 51 | 49 50 | syl | |- ( Y e. B -> Y Fn ( N X. N ) ) |
| 52 | 51 | adantl | |- ( ( X e. B /\ Y e. B ) -> Y Fn ( N X. N ) ) |
| 53 | inidm | |- ( ( N X. N ) i^i ( N X. N ) ) = ( N X. N ) |
|
| 54 | df-ov | |- ( I X J ) = ( X ` <. I , J >. ) |
|
| 55 | 54 | eqcomi | |- ( X ` <. I , J >. ) = ( I X J ) |
| 56 | 55 | a1i | |- ( ( ( X e. B /\ Y e. B ) /\ <. I , J >. e. ( N X. N ) ) -> ( X ` <. I , J >. ) = ( I X J ) ) |
| 57 | df-ov | |- ( I Y J ) = ( Y ` <. I , J >. ) |
|
| 58 | 57 | eqcomi | |- ( Y ` <. I , J >. ) = ( I Y J ) |
| 59 | 58 | a1i | |- ( ( ( X e. B /\ Y e. B ) /\ <. I , J >. e. ( N X. N ) ) -> ( Y ` <. I , J >. ) = ( I Y J ) ) |
| 60 | 48 52 20 20 53 56 59 | ofval | |- ( ( ( X e. B /\ Y e. B ) /\ <. I , J >. e. ( N X. N ) ) -> ( ( X oF .- Y ) ` <. I , J >. ) = ( ( I X J ) .- ( I Y J ) ) ) |
| 61 | 43 60 | syl | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( ( X oF .- Y ) ` <. I , J >. ) = ( ( I X J ) .- ( I Y J ) ) ) |
| 62 | 40 61 | eqtrid | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X oF .- Y ) J ) = ( ( I X J ) .- ( I Y J ) ) ) |
| 63 | 39 62 | eqtrd | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X S Y ) J ) = ( ( I X J ) .- ( I Y J ) ) ) |