This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matplusg2.a | |- A = ( N Mat R ) |
|
| matplusg2.b | |- B = ( Base ` A ) |
||
| matplusg2.p | |- .+b = ( +g ` A ) |
||
| matplusg2.q | |- .+ = ( +g ` R ) |
||
| Assertion | matplusg2 | |- ( ( X e. B /\ Y e. B ) -> ( X .+b Y ) = ( X oF .+ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matplusg2.a | |- A = ( N Mat R ) |
|
| 2 | matplusg2.b | |- B = ( Base ` A ) |
|
| 3 | matplusg2.p | |- .+b = ( +g ` A ) |
|
| 4 | matplusg2.q | |- .+ = ( +g ` R ) |
|
| 5 | 1 2 | matrcl | |- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
| 6 | 5 | adantr | |- ( ( X e. B /\ Y e. B ) -> ( N e. Fin /\ R e. _V ) ) |
| 7 | eqid | |- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
|
| 8 | 1 7 | matplusg | |- ( ( N e. Fin /\ R e. _V ) -> ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` A ) ) |
| 9 | 8 3 | eqtr4di | |- ( ( N e. Fin /\ R e. _V ) -> ( +g ` ( R freeLMod ( N X. N ) ) ) = .+b ) |
| 10 | 6 9 | syl | |- ( ( X e. B /\ Y e. B ) -> ( +g ` ( R freeLMod ( N X. N ) ) ) = .+b ) |
| 11 | 10 | oveqd | |- ( ( X e. B /\ Y e. B ) -> ( X ( +g ` ( R freeLMod ( N X. N ) ) ) Y ) = ( X .+b Y ) ) |
| 12 | eqid | |- ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) |
|
| 13 | 6 | simprd | |- ( ( X e. B /\ Y e. B ) -> R e. _V ) |
| 14 | 6 | simpld | |- ( ( X e. B /\ Y e. B ) -> N e. Fin ) |
| 15 | xpfi | |- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
|
| 16 | 14 14 15 | syl2anc | |- ( ( X e. B /\ Y e. B ) -> ( N X. N ) e. Fin ) |
| 17 | simpl | |- ( ( X e. B /\ Y e. B ) -> X e. B ) |
|
| 18 | 1 7 | matbas | |- ( ( N e. Fin /\ R e. _V ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 19 | 6 18 | syl | |- ( ( X e. B /\ Y e. B ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 20 | 19 2 | eqtr4di | |- ( ( X e. B /\ Y e. B ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = B ) |
| 21 | 17 20 | eleqtrrd | |- ( ( X e. B /\ Y e. B ) -> X e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 22 | simpr | |- ( ( X e. B /\ Y e. B ) -> Y e. B ) |
|
| 23 | 22 20 | eleqtrrd | |- ( ( X e. B /\ Y e. B ) -> Y e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 24 | eqid | |- ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` ( R freeLMod ( N X. N ) ) ) |
|
| 25 | 7 12 13 16 21 23 4 24 | frlmplusgval | |- ( ( X e. B /\ Y e. B ) -> ( X ( +g ` ( R freeLMod ( N X. N ) ) ) Y ) = ( X oF .+ Y ) ) |
| 26 | 11 25 | eqtr3d | |- ( ( X e. B /\ Y e. B ) -> ( X .+b Y ) = ( X oF .+ Y ) ) |