This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Additive inversion in the matrix ring is cell-wise. (Contributed by AV, 17-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matplusgcell.a | |- A = ( N Mat R ) |
|
| matplusgcell.b | |- B = ( Base ` A ) |
||
| matinvgcell.v | |- V = ( invg ` R ) |
||
| matinvgcell.w | |- W = ( invg ` A ) |
||
| Assertion | matinvgcell | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I ( W ` X ) J ) = ( V ` ( I X J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matplusgcell.a | |- A = ( N Mat R ) |
|
| 2 | matplusgcell.b | |- B = ( Base ` A ) |
|
| 3 | matinvgcell.v | |- V = ( invg ` R ) |
|
| 4 | matinvgcell.w | |- W = ( invg ` A ) |
|
| 5 | 1 2 | matrcl | |- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
| 6 | 5 | simpld | |- ( X e. B -> N e. Fin ) |
| 7 | simpl | |- ( ( R e. Ring /\ X e. B ) -> R e. Ring ) |
|
| 8 | 1 | matgrp | |- ( ( N e. Fin /\ R e. Ring ) -> A e. Grp ) |
| 9 | 6 7 8 | syl2an2 | |- ( ( R e. Ring /\ X e. B ) -> A e. Grp ) |
| 10 | eqid | |- ( 0g ` A ) = ( 0g ` A ) |
|
| 11 | 2 10 | grpidcl | |- ( A e. Grp -> ( 0g ` A ) e. B ) |
| 12 | 9 11 | syl | |- ( ( R e. Ring /\ X e. B ) -> ( 0g ` A ) e. B ) |
| 13 | simpr | |- ( ( R e. Ring /\ X e. B ) -> X e. B ) |
|
| 14 | 12 13 | jca | |- ( ( R e. Ring /\ X e. B ) -> ( ( 0g ` A ) e. B /\ X e. B ) ) |
| 15 | 14 | 3adant3 | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( ( 0g ` A ) e. B /\ X e. B ) ) |
| 16 | eqid | |- ( -g ` A ) = ( -g ` A ) |
|
| 17 | eqid | |- ( -g ` R ) = ( -g ` R ) |
|
| 18 | 1 2 16 17 | matsubgcell | |- ( ( R e. Ring /\ ( ( 0g ` A ) e. B /\ X e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( ( 0g ` A ) ( -g ` A ) X ) J ) = ( ( I ( 0g ` A ) J ) ( -g ` R ) ( I X J ) ) ) |
| 19 | 15 18 | syld3an2 | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I ( ( 0g ` A ) ( -g ` A ) X ) J ) = ( ( I ( 0g ` A ) J ) ( -g ` R ) ( I X J ) ) ) |
| 20 | 2 16 4 10 | grpinvval2 | |- ( ( A e. Grp /\ X e. B ) -> ( W ` X ) = ( ( 0g ` A ) ( -g ` A ) X ) ) |
| 21 | 9 13 20 | syl2anc | |- ( ( R e. Ring /\ X e. B ) -> ( W ` X ) = ( ( 0g ` A ) ( -g ` A ) X ) ) |
| 22 | 21 | 3adant3 | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( W ` X ) = ( ( 0g ` A ) ( -g ` A ) X ) ) |
| 23 | 22 | oveqd | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I ( W ` X ) J ) = ( I ( ( 0g ` A ) ( -g ` A ) X ) J ) ) |
| 24 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 25 | 24 | 3ad2ant1 | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> R e. Grp ) |
| 26 | simp3 | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I e. N /\ J e. N ) ) |
|
| 27 | 2 | eleq2i | |- ( X e. B <-> X e. ( Base ` A ) ) |
| 28 | 27 | biimpi | |- ( X e. B -> X e. ( Base ` A ) ) |
| 29 | 28 | 3ad2ant2 | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> X e. ( Base ` A ) ) |
| 30 | df-3an | |- ( ( I e. N /\ J e. N /\ X e. ( Base ` A ) ) <-> ( ( I e. N /\ J e. N ) /\ X e. ( Base ` A ) ) ) |
|
| 31 | 26 29 30 | sylanbrc | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I e. N /\ J e. N /\ X e. ( Base ` A ) ) ) |
| 32 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 33 | 1 32 | matecl | |- ( ( I e. N /\ J e. N /\ X e. ( Base ` A ) ) -> ( I X J ) e. ( Base ` R ) ) |
| 34 | 31 33 | syl | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I X J ) e. ( Base ` R ) ) |
| 35 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 36 | 32 17 3 35 | grpinvval2 | |- ( ( R e. Grp /\ ( I X J ) e. ( Base ` R ) ) -> ( V ` ( I X J ) ) = ( ( 0g ` R ) ( -g ` R ) ( I X J ) ) ) |
| 37 | 25 34 36 | syl2anc | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( V ` ( I X J ) ) = ( ( 0g ` R ) ( -g ` R ) ( I X J ) ) ) |
| 38 | 6 | anim1i | |- ( ( X e. B /\ R e. Ring ) -> ( N e. Fin /\ R e. Ring ) ) |
| 39 | 38 | ancoms | |- ( ( R e. Ring /\ X e. B ) -> ( N e. Fin /\ R e. Ring ) ) |
| 40 | 1 35 | mat0op | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( x e. N , y e. N |-> ( 0g ` R ) ) ) |
| 41 | 39 40 | syl | |- ( ( R e. Ring /\ X e. B ) -> ( 0g ` A ) = ( x e. N , y e. N |-> ( 0g ` R ) ) ) |
| 42 | 41 | 3adant3 | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( 0g ` A ) = ( x e. N , y e. N |-> ( 0g ` R ) ) ) |
| 43 | eqidd | |- ( ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) /\ ( x = I /\ y = J ) ) -> ( 0g ` R ) = ( 0g ` R ) ) |
|
| 44 | 26 | simpld | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> I e. N ) |
| 45 | simp3r | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> J e. N ) |
|
| 46 | fvexd | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( 0g ` R ) e. _V ) |
|
| 47 | 42 43 44 45 46 | ovmpod | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I ( 0g ` A ) J ) = ( 0g ` R ) ) |
| 48 | 47 | eqcomd | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( 0g ` R ) = ( I ( 0g ` A ) J ) ) |
| 49 | 48 | oveq1d | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( ( 0g ` R ) ( -g ` R ) ( I X J ) ) = ( ( I ( 0g ` A ) J ) ( -g ` R ) ( I X J ) ) ) |
| 50 | 37 49 | eqtrd | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( V ` ( I X J ) ) = ( ( I ( 0g ` A ) J ) ( -g ` R ) ( I X J ) ) ) |
| 51 | 19 23 50 | 3eqtr4d | |- ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I ( W ` X ) J ) = ( V ` ( I X J ) ) ) |