This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a zero matrix as operation. (Contributed by AV, 2-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat0op.a | |- A = ( N Mat R ) |
|
| mat0op.z | |- .0. = ( 0g ` R ) |
||
| Assertion | mat0op | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( i e. N , j e. N |-> .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat0op.a | |- A = ( N Mat R ) |
|
| 2 | mat0op.z | |- .0. = ( 0g ` R ) |
|
| 3 | eqid | |- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
|
| 4 | 1 3 | mat0 | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` A ) ) |
| 5 | fconstmpo | |- ( ( N X. N ) X. { ( 0g ` R ) } ) = ( i e. N , j e. N |-> ( 0g ` R ) ) |
|
| 6 | simpr | |- ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) |
|
| 7 | sqxpexg | |- ( N e. Fin -> ( N X. N ) e. _V ) |
|
| 8 | 7 | adantr | |- ( ( N e. Fin /\ R e. Ring ) -> ( N X. N ) e. _V ) |
| 9 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 10 | 3 9 | frlm0 | |- ( ( R e. Ring /\ ( N X. N ) e. _V ) -> ( ( N X. N ) X. { ( 0g ` R ) } ) = ( 0g ` ( R freeLMod ( N X. N ) ) ) ) |
| 11 | 6 8 10 | syl2anc | |- ( ( N e. Fin /\ R e. Ring ) -> ( ( N X. N ) X. { ( 0g ` R ) } ) = ( 0g ` ( R freeLMod ( N X. N ) ) ) ) |
| 12 | 2 | eqcomi | |- ( 0g ` R ) = .0. |
| 13 | 12 | a1i | |- ( ( i e. N /\ j e. N ) -> ( 0g ` R ) = .0. ) |
| 14 | 13 | mpoeq3ia | |- ( i e. N , j e. N |-> ( 0g ` R ) ) = ( i e. N , j e. N |-> .0. ) |
| 15 | 14 | a1i | |- ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> ( 0g ` R ) ) = ( i e. N , j e. N |-> .0. ) ) |
| 16 | 5 11 15 | 3eqtr3a | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( i e. N , j e. N |-> .0. ) ) |
| 17 | 4 16 | eqtr3d | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( i e. N , j e. N |-> .0. ) ) |