This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by AV, 7-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matplusgcell.a | |- A = ( N Mat R ) |
|
| matplusgcell.b | |- B = ( Base ` A ) |
||
| matvscacell.k | |- K = ( Base ` R ) |
||
| matvscacell.v | |- .x. = ( .s ` A ) |
||
| matvscacell.t | |- .X. = ( .r ` R ) |
||
| Assertion | matvscacell | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X .x. Y ) J ) = ( X .X. ( I Y J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matplusgcell.a | |- A = ( N Mat R ) |
|
| 2 | matplusgcell.b | |- B = ( Base ` A ) |
|
| 3 | matvscacell.k | |- K = ( Base ` R ) |
|
| 4 | matvscacell.v | |- .x. = ( .s ` A ) |
|
| 5 | matvscacell.t | |- .X. = ( .r ` R ) |
|
| 6 | eqid | |- ( N X. N ) = ( N X. N ) |
|
| 7 | 1 2 3 4 5 6 | matvsca2 | |- ( ( X e. K /\ Y e. B ) -> ( X .x. Y ) = ( ( ( N X. N ) X. { X } ) oF .X. Y ) ) |
| 8 | 7 | oveqd | |- ( ( X e. K /\ Y e. B ) -> ( I ( X .x. Y ) J ) = ( I ( ( ( N X. N ) X. { X } ) oF .X. Y ) J ) ) |
| 9 | 8 | 3ad2ant2 | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X .x. Y ) J ) = ( I ( ( ( N X. N ) X. { X } ) oF .X. Y ) J ) ) |
| 10 | df-ov | |- ( I ( ( ( N X. N ) X. { X } ) oF .X. Y ) J ) = ( ( ( ( N X. N ) X. { X } ) oF .X. Y ) ` <. I , J >. ) |
|
| 11 | 10 | a1i | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( ( ( N X. N ) X. { X } ) oF .X. Y ) J ) = ( ( ( ( N X. N ) X. { X } ) oF .X. Y ) ` <. I , J >. ) ) |
| 12 | opelxpi | |- ( ( I e. N /\ J e. N ) -> <. I , J >. e. ( N X. N ) ) |
|
| 13 | 12 | 3ad2ant3 | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> <. I , J >. e. ( N X. N ) ) |
| 14 | 1 2 | matrcl | |- ( Y e. B -> ( N e. Fin /\ R e. _V ) ) |
| 15 | 14 | simpld | |- ( Y e. B -> N e. Fin ) |
| 16 | 15 | adantl | |- ( ( X e. K /\ Y e. B ) -> N e. Fin ) |
| 17 | 16 | 3ad2ant2 | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> N e. Fin ) |
| 18 | xpfi | |- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
|
| 19 | 17 17 18 | syl2anc | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( N X. N ) e. Fin ) |
| 20 | simp2l | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> X e. K ) |
|
| 21 | 2 | eleq2i | |- ( Y e. B <-> Y e. ( Base ` A ) ) |
| 22 | 21 | biimpi | |- ( Y e. B -> Y e. ( Base ` A ) ) |
| 23 | 22 | adantl | |- ( ( X e. K /\ Y e. B ) -> Y e. ( Base ` A ) ) |
| 24 | 23 | 3ad2ant2 | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> Y e. ( Base ` A ) ) |
| 25 | simp1 | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> R e. Ring ) |
|
| 26 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 27 | 1 26 | matbas2 | |- ( ( N e. Fin /\ R e. Ring ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) |
| 28 | 17 25 27 | syl2anc | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) |
| 29 | 24 28 | eleqtrrd | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 30 | elmapfn | |- ( Y e. ( ( Base ` R ) ^m ( N X. N ) ) -> Y Fn ( N X. N ) ) |
|
| 31 | 29 30 | syl | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> Y Fn ( N X. N ) ) |
| 32 | df-ov | |- ( I Y J ) = ( Y ` <. I , J >. ) |
|
| 33 | 32 | eqcomi | |- ( Y ` <. I , J >. ) = ( I Y J ) |
| 34 | 33 | a1i | |- ( ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) /\ <. I , J >. e. ( N X. N ) ) -> ( Y ` <. I , J >. ) = ( I Y J ) ) |
| 35 | 19 20 31 34 | ofc1 | |- ( ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) /\ <. I , J >. e. ( N X. N ) ) -> ( ( ( ( N X. N ) X. { X } ) oF .X. Y ) ` <. I , J >. ) = ( X .X. ( I Y J ) ) ) |
| 36 | 13 35 | mpdan | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( ( ( ( N X. N ) X. { X } ) oF .X. Y ) ` <. I , J >. ) = ( X .X. ( I Y J ) ) ) |
| 37 | 9 11 36 | 3eqtrd | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X .x. Y ) J ) = ( X .X. ( I Y J ) ) ) |