This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of Suppes p. 89. (Contributed by NM, 10-Dec-2003) (Revised by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapsnd.1 | |- ( ph -> A e. V ) |
|
| mapsnd.2 | |- ( ph -> B e. W ) |
||
| Assertion | mapsnd | |- ( ph -> ( A ^m { B } ) = { f | E. y e. A f = { <. B , y >. } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsnd.1 | |- ( ph -> A e. V ) |
|
| 2 | mapsnd.2 | |- ( ph -> B e. W ) |
|
| 3 | snex | |- { B } e. _V |
|
| 4 | 3 | a1i | |- ( ph -> { B } e. _V ) |
| 5 | 1 4 | elmapd | |- ( ph -> ( f e. ( A ^m { B } ) <-> f : { B } --> A ) ) |
| 6 | ffn | |- ( f : { B } --> A -> f Fn { B } ) |
|
| 7 | snidg | |- ( B e. W -> B e. { B } ) |
|
| 8 | 2 7 | syl | |- ( ph -> B e. { B } ) |
| 9 | fneu | |- ( ( f Fn { B } /\ B e. { B } ) -> E! y B f y ) |
|
| 10 | 6 8 9 | syl2anr | |- ( ( ph /\ f : { B } --> A ) -> E! y B f y ) |
| 11 | euabsn | |- ( E! y B f y <-> E. y { y | B f y } = { y } ) |
|
| 12 | frel | |- ( f : { B } --> A -> Rel f ) |
|
| 13 | relimasn | |- ( Rel f -> ( f " { B } ) = { y | B f y } ) |
|
| 14 | 12 13 | syl | |- ( f : { B } --> A -> ( f " { B } ) = { y | B f y } ) |
| 15 | fdm | |- ( f : { B } --> A -> dom f = { B } ) |
|
| 16 | 15 | imaeq2d | |- ( f : { B } --> A -> ( f " dom f ) = ( f " { B } ) ) |
| 17 | imadmrn | |- ( f " dom f ) = ran f |
|
| 18 | 16 17 | eqtr3di | |- ( f : { B } --> A -> ( f " { B } ) = ran f ) |
| 19 | 14 18 | eqtr3d | |- ( f : { B } --> A -> { y | B f y } = ran f ) |
| 20 | 19 | eqeq1d | |- ( f : { B } --> A -> ( { y | B f y } = { y } <-> ran f = { y } ) ) |
| 21 | 20 | exbidv | |- ( f : { B } --> A -> ( E. y { y | B f y } = { y } <-> E. y ran f = { y } ) ) |
| 22 | 11 21 | bitrid | |- ( f : { B } --> A -> ( E! y B f y <-> E. y ran f = { y } ) ) |
| 23 | 22 | adantl | |- ( ( ph /\ f : { B } --> A ) -> ( E! y B f y <-> E. y ran f = { y } ) ) |
| 24 | 10 23 | mpbid | |- ( ( ph /\ f : { B } --> A ) -> E. y ran f = { y } ) |
| 25 | frn | |- ( f : { B } --> A -> ran f C_ A ) |
|
| 26 | 25 | sseld | |- ( f : { B } --> A -> ( y e. ran f -> y e. A ) ) |
| 27 | vsnid | |- y e. { y } |
|
| 28 | eleq2 | |- ( ran f = { y } -> ( y e. ran f <-> y e. { y } ) ) |
|
| 29 | 27 28 | mpbiri | |- ( ran f = { y } -> y e. ran f ) |
| 30 | 26 29 | impel | |- ( ( f : { B } --> A /\ ran f = { y } ) -> y e. A ) |
| 31 | 30 | adantll | |- ( ( ( ph /\ f : { B } --> A ) /\ ran f = { y } ) -> y e. A ) |
| 32 | ffrn | |- ( f : { B } --> A -> f : { B } --> ran f ) |
|
| 33 | feq3 | |- ( ran f = { y } -> ( f : { B } --> ran f <-> f : { B } --> { y } ) ) |
|
| 34 | 32 33 | syl5ibcom | |- ( f : { B } --> A -> ( ran f = { y } -> f : { B } --> { y } ) ) |
| 35 | 34 | imp | |- ( ( f : { B } --> A /\ ran f = { y } ) -> f : { B } --> { y } ) |
| 36 | 35 | adantll | |- ( ( ( ph /\ f : { B } --> A ) /\ ran f = { y } ) -> f : { B } --> { y } ) |
| 37 | 2 | ad2antrr | |- ( ( ( ph /\ f : { B } --> A ) /\ ran f = { y } ) -> B e. W ) |
| 38 | vex | |- y e. _V |
|
| 39 | fsng | |- ( ( B e. W /\ y e. _V ) -> ( f : { B } --> { y } <-> f = { <. B , y >. } ) ) |
|
| 40 | 37 38 39 | sylancl | |- ( ( ( ph /\ f : { B } --> A ) /\ ran f = { y } ) -> ( f : { B } --> { y } <-> f = { <. B , y >. } ) ) |
| 41 | 36 40 | mpbid | |- ( ( ( ph /\ f : { B } --> A ) /\ ran f = { y } ) -> f = { <. B , y >. } ) |
| 42 | 31 41 | jca | |- ( ( ( ph /\ f : { B } --> A ) /\ ran f = { y } ) -> ( y e. A /\ f = { <. B , y >. } ) ) |
| 43 | 42 | ex | |- ( ( ph /\ f : { B } --> A ) -> ( ran f = { y } -> ( y e. A /\ f = { <. B , y >. } ) ) ) |
| 44 | 43 | eximdv | |- ( ( ph /\ f : { B } --> A ) -> ( E. y ran f = { y } -> E. y ( y e. A /\ f = { <. B , y >. } ) ) ) |
| 45 | 24 44 | mpd | |- ( ( ph /\ f : { B } --> A ) -> E. y ( y e. A /\ f = { <. B , y >. } ) ) |
| 46 | df-rex | |- ( E. y e. A f = { <. B , y >. } <-> E. y ( y e. A /\ f = { <. B , y >. } ) ) |
|
| 47 | 45 46 | sylibr | |- ( ( ph /\ f : { B } --> A ) -> E. y e. A f = { <. B , y >. } ) |
| 48 | 47 | ex | |- ( ph -> ( f : { B } --> A -> E. y e. A f = { <. B , y >. } ) ) |
| 49 | f1osng | |- ( ( B e. W /\ y e. _V ) -> { <. B , y >. } : { B } -1-1-onto-> { y } ) |
|
| 50 | 2 38 49 | sylancl | |- ( ph -> { <. B , y >. } : { B } -1-1-onto-> { y } ) |
| 51 | 50 | adantr | |- ( ( ph /\ f = { <. B , y >. } ) -> { <. B , y >. } : { B } -1-1-onto-> { y } ) |
| 52 | f1oeq1 | |- ( f = { <. B , y >. } -> ( f : { B } -1-1-onto-> { y } <-> { <. B , y >. } : { B } -1-1-onto-> { y } ) ) |
|
| 53 | 52 | bicomd | |- ( f = { <. B , y >. } -> ( { <. B , y >. } : { B } -1-1-onto-> { y } <-> f : { B } -1-1-onto-> { y } ) ) |
| 54 | 53 | adantl | |- ( ( ph /\ f = { <. B , y >. } ) -> ( { <. B , y >. } : { B } -1-1-onto-> { y } <-> f : { B } -1-1-onto-> { y } ) ) |
| 55 | 51 54 | mpbid | |- ( ( ph /\ f = { <. B , y >. } ) -> f : { B } -1-1-onto-> { y } ) |
| 56 | f1of | |- ( f : { B } -1-1-onto-> { y } -> f : { B } --> { y } ) |
|
| 57 | 55 56 | syl | |- ( ( ph /\ f = { <. B , y >. } ) -> f : { B } --> { y } ) |
| 58 | 57 | 3adant2 | |- ( ( ph /\ y e. A /\ f = { <. B , y >. } ) -> f : { B } --> { y } ) |
| 59 | snssi | |- ( y e. A -> { y } C_ A ) |
|
| 60 | 59 | 3ad2ant2 | |- ( ( ph /\ y e. A /\ f = { <. B , y >. } ) -> { y } C_ A ) |
| 61 | 58 60 | fssd | |- ( ( ph /\ y e. A /\ f = { <. B , y >. } ) -> f : { B } --> A ) |
| 62 | 61 | rexlimdv3a | |- ( ph -> ( E. y e. A f = { <. B , y >. } -> f : { B } --> A ) ) |
| 63 | 48 62 | impbid | |- ( ph -> ( f : { B } --> A <-> E. y e. A f = { <. B , y >. } ) ) |
| 64 | 5 63 | bitrd | |- ( ph -> ( f e. ( A ^m { B } ) <-> E. y e. A f = { <. B , y >. } ) ) |
| 65 | 64 | eqabdv | |- ( ph -> ( A ^m { B } ) = { f | E. y e. A f = { <. B , y >. } } ) |