This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a singleton. (Contributed by NM, 20-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relimasn | |- ( Rel R -> ( R " { A } ) = { y | A R y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 2 | imaeq2 | |- ( { A } = (/) -> ( R " { A } ) = ( R " (/) ) ) |
|
| 3 | 1 2 | sylbi | |- ( -. A e. _V -> ( R " { A } ) = ( R " (/) ) ) |
| 4 | ima0 | |- ( R " (/) ) = (/) |
|
| 5 | 3 4 | eqtrdi | |- ( -. A e. _V -> ( R " { A } ) = (/) ) |
| 6 | 5 | adantl | |- ( ( Rel R /\ -. A e. _V ) -> ( R " { A } ) = (/) ) |
| 7 | brrelex1 | |- ( ( Rel R /\ A R x ) -> A e. _V ) |
|
| 8 | 7 | stoic1a | |- ( ( Rel R /\ -. A e. _V ) -> -. A R x ) |
| 9 | 8 | alrimiv | |- ( ( Rel R /\ -. A e. _V ) -> A. x -. A R x ) |
| 10 | breq2 | |- ( y = x -> ( A R y <-> A R x ) ) |
|
| 11 | 10 | ab0w | |- ( { y | A R y } = (/) <-> A. x -. A R x ) |
| 12 | 9 11 | sylibr | |- ( ( Rel R /\ -. A e. _V ) -> { y | A R y } = (/) ) |
| 13 | 6 12 | eqtr4d | |- ( ( Rel R /\ -. A e. _V ) -> ( R " { A } ) = { y | A R y } ) |
| 14 | 13 | ex | |- ( Rel R -> ( -. A e. _V -> ( R " { A } ) = { y | A R y } ) ) |
| 15 | imasng | |- ( A e. _V -> ( R " { A } ) = { y | A R y } ) |
|
| 16 | 14 15 | pm2.61d2 | |- ( Rel R -> ( R " { A } ) = { y | A R y } ) |