This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004) (Proof shortened by Andrew Salmon, 17-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fneu | |- ( ( F Fn A /\ B e. A ) -> E! y B F y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmo | |- ( Fun F -> E* y B F y ) |
|
| 2 | 1 | adantr | |- ( ( Fun F /\ B e. dom F ) -> E* y B F y ) |
| 3 | eldmg | |- ( B e. dom F -> ( B e. dom F <-> E. y B F y ) ) |
|
| 4 | 3 | ibi | |- ( B e. dom F -> E. y B F y ) |
| 5 | 4 | adantl | |- ( ( Fun F /\ B e. dom F ) -> E. y B F y ) |
| 6 | exmoeub | |- ( E. y B F y -> ( E* y B F y <-> E! y B F y ) ) |
|
| 7 | 5 6 | syl | |- ( ( Fun F /\ B e. dom F ) -> ( E* y B F y <-> E! y B F y ) ) |
| 8 | 2 7 | mpbid | |- ( ( Fun F /\ B e. dom F ) -> E! y B F y ) |
| 9 | 8 | funfni | |- ( ( F Fn A /\ B e. A ) -> E! y B F y ) |