This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rows in a matrix product are functions only of the corresponding rows in the left argument. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamures.f | |- F = ( R maMul <. M , N , P >. ) |
|
| mamures.g | |- G = ( R maMul <. I , N , P >. ) |
||
| mamures.b | |- B = ( Base ` R ) |
||
| mamures.r | |- ( ph -> R e. V ) |
||
| mamures.m | |- ( ph -> M e. Fin ) |
||
| mamures.n | |- ( ph -> N e. Fin ) |
||
| mamures.p | |- ( ph -> P e. Fin ) |
||
| mamures.i | |- ( ph -> I C_ M ) |
||
| mamures.x | |- ( ph -> X e. ( B ^m ( M X. N ) ) ) |
||
| mamures.y | |- ( ph -> Y e. ( B ^m ( N X. P ) ) ) |
||
| Assertion | mamures | |- ( ph -> ( ( X F Y ) |` ( I X. P ) ) = ( ( X |` ( I X. N ) ) G Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamures.f | |- F = ( R maMul <. M , N , P >. ) |
|
| 2 | mamures.g | |- G = ( R maMul <. I , N , P >. ) |
|
| 3 | mamures.b | |- B = ( Base ` R ) |
|
| 4 | mamures.r | |- ( ph -> R e. V ) |
|
| 5 | mamures.m | |- ( ph -> M e. Fin ) |
|
| 6 | mamures.n | |- ( ph -> N e. Fin ) |
|
| 7 | mamures.p | |- ( ph -> P e. Fin ) |
|
| 8 | mamures.i | |- ( ph -> I C_ M ) |
|
| 9 | mamures.x | |- ( ph -> X e. ( B ^m ( M X. N ) ) ) |
|
| 10 | mamures.y | |- ( ph -> Y e. ( B ^m ( N X. P ) ) ) |
|
| 11 | ssidd | |- ( ph -> P C_ P ) |
|
| 12 | resmpo | |- ( ( I C_ M /\ P C_ P ) -> ( ( i e. M , j e. P |-> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Y j ) ) ) ) ) |` ( I X. P ) ) = ( i e. I , j e. P |-> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Y j ) ) ) ) ) ) |
|
| 13 | 8 11 12 | syl2anc | |- ( ph -> ( ( i e. M , j e. P |-> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Y j ) ) ) ) ) |` ( I X. P ) ) = ( i e. I , j e. P |-> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Y j ) ) ) ) ) ) |
| 14 | ovres | |- ( ( i e. I /\ k e. N ) -> ( i ( X |` ( I X. N ) ) k ) = ( i X k ) ) |
|
| 15 | 14 | 3ad2antl2 | |- ( ( ( ph /\ i e. I /\ j e. P ) /\ k e. N ) -> ( i ( X |` ( I X. N ) ) k ) = ( i X k ) ) |
| 16 | 15 | eqcomd | |- ( ( ( ph /\ i e. I /\ j e. P ) /\ k e. N ) -> ( i X k ) = ( i ( X |` ( I X. N ) ) k ) ) |
| 17 | 16 | oveq1d | |- ( ( ( ph /\ i e. I /\ j e. P ) /\ k e. N ) -> ( ( i X k ) ( .r ` R ) ( k Y j ) ) = ( ( i ( X |` ( I X. N ) ) k ) ( .r ` R ) ( k Y j ) ) ) |
| 18 | 17 | mpteq2dva | |- ( ( ph /\ i e. I /\ j e. P ) -> ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Y j ) ) ) = ( k e. N |-> ( ( i ( X |` ( I X. N ) ) k ) ( .r ` R ) ( k Y j ) ) ) ) |
| 19 | 18 | oveq2d | |- ( ( ph /\ i e. I /\ j e. P ) -> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Y j ) ) ) ) = ( R gsum ( k e. N |-> ( ( i ( X |` ( I X. N ) ) k ) ( .r ` R ) ( k Y j ) ) ) ) ) |
| 20 | 19 | mpoeq3dva | |- ( ph -> ( i e. I , j e. P |-> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Y j ) ) ) ) ) = ( i e. I , j e. P |-> ( R gsum ( k e. N |-> ( ( i ( X |` ( I X. N ) ) k ) ( .r ` R ) ( k Y j ) ) ) ) ) ) |
| 21 | 13 20 | eqtrd | |- ( ph -> ( ( i e. M , j e. P |-> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Y j ) ) ) ) ) |` ( I X. P ) ) = ( i e. I , j e. P |-> ( R gsum ( k e. N |-> ( ( i ( X |` ( I X. N ) ) k ) ( .r ` R ) ( k Y j ) ) ) ) ) ) |
| 22 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 23 | 1 3 22 4 5 6 7 9 10 | mamuval | |- ( ph -> ( X F Y ) = ( i e. M , j e. P |-> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Y j ) ) ) ) ) ) |
| 24 | 23 | reseq1d | |- ( ph -> ( ( X F Y ) |` ( I X. P ) ) = ( ( i e. M , j e. P |-> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Y j ) ) ) ) ) |` ( I X. P ) ) ) |
| 25 | 5 8 | ssfid | |- ( ph -> I e. Fin ) |
| 26 | elmapi | |- ( X e. ( B ^m ( M X. N ) ) -> X : ( M X. N ) --> B ) |
|
| 27 | 9 26 | syl | |- ( ph -> X : ( M X. N ) --> B ) |
| 28 | xpss1 | |- ( I C_ M -> ( I X. N ) C_ ( M X. N ) ) |
|
| 29 | 8 28 | syl | |- ( ph -> ( I X. N ) C_ ( M X. N ) ) |
| 30 | 27 29 | fssresd | |- ( ph -> ( X |` ( I X. N ) ) : ( I X. N ) --> B ) |
| 31 | 3 | fvexi | |- B e. _V |
| 32 | 31 | a1i | |- ( ph -> B e. _V ) |
| 33 | xpfi | |- ( ( I e. Fin /\ N e. Fin ) -> ( I X. N ) e. Fin ) |
|
| 34 | 25 6 33 | syl2anc | |- ( ph -> ( I X. N ) e. Fin ) |
| 35 | 32 34 | elmapd | |- ( ph -> ( ( X |` ( I X. N ) ) e. ( B ^m ( I X. N ) ) <-> ( X |` ( I X. N ) ) : ( I X. N ) --> B ) ) |
| 36 | 30 35 | mpbird | |- ( ph -> ( X |` ( I X. N ) ) e. ( B ^m ( I X. N ) ) ) |
| 37 | 2 3 22 4 25 6 7 36 10 | mamuval | |- ( ph -> ( ( X |` ( I X. N ) ) G Y ) = ( i e. I , j e. P |-> ( R gsum ( k e. N |-> ( ( i ( X |` ( I X. N ) ) k ) ( .r ` R ) ( k Y j ) ) ) ) ) ) |
| 38 | 21 24 37 | 3eqtr4d | |- ( ph -> ( ( X F Y ) |` ( I X. P ) ) = ( ( X |` ( I X. N ) ) G Y ) ) |