This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpvlinv.b | |- B = ( Base ` G ) |
|
| grpvlinv.p | |- .+ = ( +g ` G ) |
||
| grpvlinv.n | |- N = ( invg ` G ) |
||
| grpvlinv.z | |- .0. = ( 0g ` G ) |
||
| Assertion | grpvlinv | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( ( N o. X ) oF .+ X ) = ( I X. { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpvlinv.b | |- B = ( Base ` G ) |
|
| 2 | grpvlinv.p | |- .+ = ( +g ` G ) |
|
| 3 | grpvlinv.n | |- N = ( invg ` G ) |
|
| 4 | grpvlinv.z | |- .0. = ( 0g ` G ) |
|
| 5 | elmapex | |- ( X e. ( B ^m I ) -> ( B e. _V /\ I e. _V ) ) |
|
| 6 | 5 | simprd | |- ( X e. ( B ^m I ) -> I e. _V ) |
| 7 | 6 | adantl | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> I e. _V ) |
| 8 | elmapi | |- ( X e. ( B ^m I ) -> X : I --> B ) |
|
| 9 | 8 | adantl | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> X : I --> B ) |
| 10 | 1 4 | grpidcl | |- ( G e. Grp -> .0. e. B ) |
| 11 | 10 | adantr | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> .0. e. B ) |
| 12 | 1 3 | grpinvf | |- ( G e. Grp -> N : B --> B ) |
| 13 | 12 | adantr | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> N : B --> B ) |
| 14 | fcompt | |- ( ( N : B --> B /\ X : I --> B ) -> ( N o. X ) = ( x e. I |-> ( N ` ( X ` x ) ) ) ) |
|
| 15 | 12 8 14 | syl2an | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( N o. X ) = ( x e. I |-> ( N ` ( X ` x ) ) ) ) |
| 16 | 1 2 4 3 | grplinv | |- ( ( G e. Grp /\ y e. B ) -> ( ( N ` y ) .+ y ) = .0. ) |
| 17 | 16 | adantlr | |- ( ( ( G e. Grp /\ X e. ( B ^m I ) ) /\ y e. B ) -> ( ( N ` y ) .+ y ) = .0. ) |
| 18 | 7 9 11 13 15 17 | caofinvl | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( ( N o. X ) oF .+ X ) = ( I X. { .0. } ) ) |