This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamumat1cl.b | |- B = ( Base ` R ) |
|
| mamumat1cl.r | |- ( ph -> R e. Ring ) |
||
| mamumat1cl.o | |- .1. = ( 1r ` R ) |
||
| mamumat1cl.z | |- .0. = ( 0g ` R ) |
||
| mamumat1cl.i | |- I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) |
||
| mamumat1cl.m | |- ( ph -> M e. Fin ) |
||
| Assertion | mat1comp | |- ( ( A e. M /\ J e. M ) -> ( A I J ) = if ( A = J , .1. , .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamumat1cl.b | |- B = ( Base ` R ) |
|
| 2 | mamumat1cl.r | |- ( ph -> R e. Ring ) |
|
| 3 | mamumat1cl.o | |- .1. = ( 1r ` R ) |
|
| 4 | mamumat1cl.z | |- .0. = ( 0g ` R ) |
|
| 5 | mamumat1cl.i | |- I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) |
|
| 6 | mamumat1cl.m | |- ( ph -> M e. Fin ) |
|
| 7 | eqeq1 | |- ( i = A -> ( i = j <-> A = j ) ) |
|
| 8 | 7 | ifbid | |- ( i = A -> if ( i = j , .1. , .0. ) = if ( A = j , .1. , .0. ) ) |
| 9 | eqeq2 | |- ( j = J -> ( A = j <-> A = J ) ) |
|
| 10 | 9 | ifbid | |- ( j = J -> if ( A = j , .1. , .0. ) = if ( A = J , .1. , .0. ) ) |
| 11 | 3 | fvexi | |- .1. e. _V |
| 12 | 4 | fvexi | |- .0. e. _V |
| 13 | 11 12 | ifex | |- if ( A = J , .1. , .0. ) e. _V |
| 14 | 8 10 5 13 | ovmpo | |- ( ( A e. M /\ J e. M ) -> ( A I J ) = if ( A = J , .1. , .0. ) ) |