This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0enne | |- ( N e. NN -> ( ( N / 2 ) e. NN0 <-> ( N / 2 ) e. NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( ( N / 2 ) e. NN0 <-> ( ( N / 2 ) e. NN \/ ( N / 2 ) = 0 ) ) |
|
| 2 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 3 | 2cnd | |- ( N e. NN -> 2 e. CC ) |
|
| 4 | 2ne0 | |- 2 =/= 0 |
|
| 5 | 4 | a1i | |- ( N e. NN -> 2 =/= 0 ) |
| 6 | 2 3 5 | diveq0ad | |- ( N e. NN -> ( ( N / 2 ) = 0 <-> N = 0 ) ) |
| 7 | eleq1 | |- ( N = 0 -> ( N e. NN <-> 0 e. NN ) ) |
|
| 8 | 0nnn | |- -. 0 e. NN |
|
| 9 | 8 | pm2.21i | |- ( 0 e. NN -> ( N / 2 ) e. NN ) |
| 10 | 7 9 | biimtrdi | |- ( N = 0 -> ( N e. NN -> ( N / 2 ) e. NN ) ) |
| 11 | 10 | com12 | |- ( N e. NN -> ( N = 0 -> ( N / 2 ) e. NN ) ) |
| 12 | 6 11 | sylbid | |- ( N e. NN -> ( ( N / 2 ) = 0 -> ( N / 2 ) e. NN ) ) |
| 13 | 12 | com12 | |- ( ( N / 2 ) = 0 -> ( N e. NN -> ( N / 2 ) e. NN ) ) |
| 14 | 13 | jao1i | |- ( ( ( N / 2 ) e. NN \/ ( N / 2 ) = 0 ) -> ( N e. NN -> ( N / 2 ) e. NN ) ) |
| 15 | 1 14 | sylbi | |- ( ( N / 2 ) e. NN0 -> ( N e. NN -> ( N / 2 ) e. NN ) ) |
| 16 | 15 | com12 | |- ( N e. NN -> ( ( N / 2 ) e. NN0 -> ( N / 2 ) e. NN ) ) |
| 17 | nnnn0 | |- ( ( N / 2 ) e. NN -> ( N / 2 ) e. NN0 ) |
|
| 18 | 16 17 | impbid1 | |- ( N e. NN -> ( ( N / 2 ) e. NN0 <-> ( N / 2 ) e. NN ) ) |