This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brecop.1 | |- .~ e. _V |
|
| brecop.2 | |- .~ Er ( G X. G ) |
||
| brecop.4 | |- H = ( ( G X. G ) /. .~ ) |
||
| brecop.5 | |- .<_ = { <. x , y >. | ( ( x e. H /\ y e. H ) /\ E. z E. w E. v E. u ( ( x = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) /\ ph ) ) } |
||
| brecop.6 | |- ( ( ( ( z e. G /\ w e. G ) /\ ( A e. G /\ B e. G ) ) /\ ( ( v e. G /\ u e. G ) /\ ( C e. G /\ D e. G ) ) ) -> ( ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) -> ( ph <-> ps ) ) ) |
||
| Assertion | brecop | |- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( [ <. A , B >. ] .~ .<_ [ <. C , D >. ] .~ <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brecop.1 | |- .~ e. _V |
|
| 2 | brecop.2 | |- .~ Er ( G X. G ) |
|
| 3 | brecop.4 | |- H = ( ( G X. G ) /. .~ ) |
|
| 4 | brecop.5 | |- .<_ = { <. x , y >. | ( ( x e. H /\ y e. H ) /\ E. z E. w E. v E. u ( ( x = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) /\ ph ) ) } |
|
| 5 | brecop.6 | |- ( ( ( ( z e. G /\ w e. G ) /\ ( A e. G /\ B e. G ) ) /\ ( ( v e. G /\ u e. G ) /\ ( C e. G /\ D e. G ) ) ) -> ( ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) -> ( ph <-> ps ) ) ) |
|
| 6 | 1 3 | ecopqsi | |- ( ( A e. G /\ B e. G ) -> [ <. A , B >. ] .~ e. H ) |
| 7 | 1 3 | ecopqsi | |- ( ( C e. G /\ D e. G ) -> [ <. C , D >. ] .~ e. H ) |
| 8 | df-br | |- ( [ <. A , B >. ] .~ .<_ [ <. C , D >. ] .~ <-> <. [ <. A , B >. ] .~ , [ <. C , D >. ] .~ >. e. .<_ ) |
|
| 9 | 4 | eleq2i | |- ( <. [ <. A , B >. ] .~ , [ <. C , D >. ] .~ >. e. .<_ <-> <. [ <. A , B >. ] .~ , [ <. C , D >. ] .~ >. e. { <. x , y >. | ( ( x e. H /\ y e. H ) /\ E. z E. w E. v E. u ( ( x = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) /\ ph ) ) } ) |
| 10 | 8 9 | bitri | |- ( [ <. A , B >. ] .~ .<_ [ <. C , D >. ] .~ <-> <. [ <. A , B >. ] .~ , [ <. C , D >. ] .~ >. e. { <. x , y >. | ( ( x e. H /\ y e. H ) /\ E. z E. w E. v E. u ( ( x = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) /\ ph ) ) } ) |
| 11 | eqeq1 | |- ( x = [ <. A , B >. ] .~ -> ( x = [ <. z , w >. ] .~ <-> [ <. A , B >. ] .~ = [ <. z , w >. ] .~ ) ) |
|
| 12 | 11 | anbi1d | |- ( x = [ <. A , B >. ] .~ -> ( ( x = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) <-> ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) ) ) |
| 13 | 12 | anbi1d | |- ( x = [ <. A , B >. ] .~ -> ( ( ( x = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) /\ ph ) <-> ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) /\ ph ) ) ) |
| 14 | 13 | 4exbidv | |- ( x = [ <. A , B >. ] .~ -> ( E. z E. w E. v E. u ( ( x = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) /\ ph ) <-> E. z E. w E. v E. u ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) /\ ph ) ) ) |
| 15 | eqeq1 | |- ( y = [ <. C , D >. ] .~ -> ( y = [ <. v , u >. ] .~ <-> [ <. C , D >. ] .~ = [ <. v , u >. ] .~ ) ) |
|
| 16 | 15 | anbi2d | |- ( y = [ <. C , D >. ] .~ -> ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) <-> ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ [ <. C , D >. ] .~ = [ <. v , u >. ] .~ ) ) ) |
| 17 | 16 | anbi1d | |- ( y = [ <. C , D >. ] .~ -> ( ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) /\ ph ) <-> ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ [ <. C , D >. ] .~ = [ <. v , u >. ] .~ ) /\ ph ) ) ) |
| 18 | 17 | 4exbidv | |- ( y = [ <. C , D >. ] .~ -> ( E. z E. w E. v E. u ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) /\ ph ) <-> E. z E. w E. v E. u ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ [ <. C , D >. ] .~ = [ <. v , u >. ] .~ ) /\ ph ) ) ) |
| 19 | 14 18 | opelopab2 | |- ( ( [ <. A , B >. ] .~ e. H /\ [ <. C , D >. ] .~ e. H ) -> ( <. [ <. A , B >. ] .~ , [ <. C , D >. ] .~ >. e. { <. x , y >. | ( ( x e. H /\ y e. H ) /\ E. z E. w E. v E. u ( ( x = [ <. z , w >. ] .~ /\ y = [ <. v , u >. ] .~ ) /\ ph ) ) } <-> E. z E. w E. v E. u ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ [ <. C , D >. ] .~ = [ <. v , u >. ] .~ ) /\ ph ) ) ) |
| 20 | 10 19 | bitrid | |- ( ( [ <. A , B >. ] .~ e. H /\ [ <. C , D >. ] .~ e. H ) -> ( [ <. A , B >. ] .~ .<_ [ <. C , D >. ] .~ <-> E. z E. w E. v E. u ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ [ <. C , D >. ] .~ = [ <. v , u >. ] .~ ) /\ ph ) ) ) |
| 21 | 6 7 20 | syl2an | |- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( [ <. A , B >. ] .~ .<_ [ <. C , D >. ] .~ <-> E. z E. w E. v E. u ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ [ <. C , D >. ] .~ = [ <. v , u >. ] .~ ) /\ ph ) ) ) |
| 22 | opeq12 | |- ( ( z = A /\ w = B ) -> <. z , w >. = <. A , B >. ) |
|
| 23 | 22 | eceq1d | |- ( ( z = A /\ w = B ) -> [ <. z , w >. ] .~ = [ <. A , B >. ] .~ ) |
| 24 | opeq12 | |- ( ( v = C /\ u = D ) -> <. v , u >. = <. C , D >. ) |
|
| 25 | 24 | eceq1d | |- ( ( v = C /\ u = D ) -> [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) |
| 26 | 23 25 | anim12i | |- ( ( ( z = A /\ w = B ) /\ ( v = C /\ u = D ) ) -> ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) ) |
| 27 | opelxpi | |- ( ( A e. G /\ B e. G ) -> <. A , B >. e. ( G X. G ) ) |
|
| 28 | opelxp | |- ( <. z , w >. e. ( G X. G ) <-> ( z e. G /\ w e. G ) ) |
|
| 29 | 2 | a1i | |- ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ -> .~ Er ( G X. G ) ) |
| 30 | id | |- ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ -> [ <. z , w >. ] .~ = [ <. A , B >. ] .~ ) |
|
| 31 | 29 30 | ereldm | |- ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ -> ( <. z , w >. e. ( G X. G ) <-> <. A , B >. e. ( G X. G ) ) ) |
| 32 | 28 31 | bitr3id | |- ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ -> ( ( z e. G /\ w e. G ) <-> <. A , B >. e. ( G X. G ) ) ) |
| 33 | 27 32 | imbitrrid | |- ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ -> ( ( A e. G /\ B e. G ) -> ( z e. G /\ w e. G ) ) ) |
| 34 | opelxpi | |- ( ( C e. G /\ D e. G ) -> <. C , D >. e. ( G X. G ) ) |
|
| 35 | opelxp | |- ( <. v , u >. e. ( G X. G ) <-> ( v e. G /\ u e. G ) ) |
|
| 36 | 2 | a1i | |- ( [ <. v , u >. ] .~ = [ <. C , D >. ] .~ -> .~ Er ( G X. G ) ) |
| 37 | id | |- ( [ <. v , u >. ] .~ = [ <. C , D >. ] .~ -> [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) |
|
| 38 | 36 37 | ereldm | |- ( [ <. v , u >. ] .~ = [ <. C , D >. ] .~ -> ( <. v , u >. e. ( G X. G ) <-> <. C , D >. e. ( G X. G ) ) ) |
| 39 | 35 38 | bitr3id | |- ( [ <. v , u >. ] .~ = [ <. C , D >. ] .~ -> ( ( v e. G /\ u e. G ) <-> <. C , D >. e. ( G X. G ) ) ) |
| 40 | 34 39 | imbitrrid | |- ( [ <. v , u >. ] .~ = [ <. C , D >. ] .~ -> ( ( C e. G /\ D e. G ) -> ( v e. G /\ u e. G ) ) ) |
| 41 | 33 40 | im2anan9 | |- ( ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) -> ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( ( z e. G /\ w e. G ) /\ ( v e. G /\ u e. G ) ) ) ) |
| 42 | 5 | an4s | |- ( ( ( ( z e. G /\ w e. G ) /\ ( v e. G /\ u e. G ) ) /\ ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) ) -> ( ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) -> ( ph <-> ps ) ) ) |
| 43 | 42 | ex | |- ( ( ( z e. G /\ w e. G ) /\ ( v e. G /\ u e. G ) ) -> ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) -> ( ph <-> ps ) ) ) ) |
| 44 | 43 | com13 | |- ( ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) -> ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( ( ( z e. G /\ w e. G ) /\ ( v e. G /\ u e. G ) ) -> ( ph <-> ps ) ) ) ) |
| 45 | 41 44 | mpdd | |- ( ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) -> ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( ph <-> ps ) ) ) |
| 46 | 45 | pm5.74d | |- ( ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) -> ( ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ph ) <-> ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ps ) ) ) |
| 47 | 26 46 | cgsex4g | |- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( E. z E. w E. v E. u ( ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) /\ ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ph ) ) <-> ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ps ) ) ) |
| 48 | eqcom | |- ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ <-> [ <. z , w >. ] .~ = [ <. A , B >. ] .~ ) |
|
| 49 | eqcom | |- ( [ <. C , D >. ] .~ = [ <. v , u >. ] .~ <-> [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) |
|
| 50 | 48 49 | anbi12i | |- ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ [ <. C , D >. ] .~ = [ <. v , u >. ] .~ ) <-> ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) ) |
| 51 | 50 | a1i | |- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ [ <. C , D >. ] .~ = [ <. v , u >. ] .~ ) <-> ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) ) ) |
| 52 | biimt | |- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( ph <-> ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ph ) ) ) |
|
| 53 | 51 52 | anbi12d | |- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ [ <. C , D >. ] .~ = [ <. v , u >. ] .~ ) /\ ph ) <-> ( ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) /\ ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ph ) ) ) ) |
| 54 | 53 | 4exbidv | |- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( E. z E. w E. v E. u ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ [ <. C , D >. ] .~ = [ <. v , u >. ] .~ ) /\ ph ) <-> E. z E. w E. v E. u ( ( [ <. z , w >. ] .~ = [ <. A , B >. ] .~ /\ [ <. v , u >. ] .~ = [ <. C , D >. ] .~ ) /\ ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ph ) ) ) ) |
| 55 | biimt | |- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( ps <-> ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ps ) ) ) |
|
| 56 | 47 54 55 | 3bitr4d | |- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( E. z E. w E. v E. u ( ( [ <. A , B >. ] .~ = [ <. z , w >. ] .~ /\ [ <. C , D >. ] .~ = [ <. v , u >. ] .~ ) /\ ph ) <-> ps ) ) |
| 57 | 21 56 | bitrd | |- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( [ <. A , B >. ] .~ .<_ [ <. C , D >. ] .~ <-> ps ) ) |