This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-4.4 of Gleason p. 127. (Contributed by NM, 14-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ltr | |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cltr | |- |
|
| 1 | vx | |- x |
|
| 2 | vy | |- y |
|
| 3 | 1 | cv | |- x |
| 4 | cnr | |- R. |
|
| 5 | 3 4 | wcel | |- x e. R. |
| 6 | 2 | cv | |- y |
| 7 | 6 4 | wcel | |- y e. R. |
| 8 | 5 7 | wa | |- ( x e. R. /\ y e. R. ) |
| 9 | vz | |- z |
|
| 10 | vw | |- w |
|
| 11 | vv | |- v |
|
| 12 | vu | |- u |
|
| 13 | 9 | cv | |- z |
| 14 | 10 | cv | |- w |
| 15 | 13 14 | cop | |- <. z , w >. |
| 16 | cer | |- ~R |
|
| 17 | 15 16 | cec | |- [ <. z , w >. ] ~R |
| 18 | 3 17 | wceq | |- x = [ <. z , w >. ] ~R |
| 19 | 11 | cv | |- v |
| 20 | 12 | cv | |- u |
| 21 | 19 20 | cop | |- <. v , u >. |
| 22 | 21 16 | cec | |- [ <. v , u >. ] ~R |
| 23 | 6 22 | wceq | |- y = [ <. v , u >. ] ~R |
| 24 | 18 23 | wa | |- ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) |
| 25 | cpp | |- +P. |
|
| 26 | 13 20 25 | co | |- ( z +P. u ) |
| 27 | cltp | |- |
|
| 28 | 14 19 25 | co | |- ( w +P. v ) |
| 29 | 26 28 27 | wbr | |- ( z +P. u ) |
| 30 | 24 29 | wa | |- ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 31 | 30 12 | wex | |- E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 32 | 31 11 | wex | |- E. v E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 33 | 32 10 | wex | |- E. w E. v E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 34 | 33 9 | wex | |- E. z E. w E. v E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 35 | 8 34 | wa | |- ( ( x e. R. /\ y e. R. ) /\ E. z E. w E. v E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 36 | 35 1 2 | copab | |- { <. x , y >. | ( ( x e. R. /\ y e. R. ) /\ E. z E. w E. v E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 37 | 0 36 | wceq | |- |