This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation on a quotient set. Lemma for real number construction. Eliminates antecedent from last hypothesis. (Contributed by NM, 13-Feb-1996) (Revised by AV, 12-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brecop2.1 | |- dom .~ = ( G X. G ) |
|
| brecop2.2 | |- H = ( ( G X. G ) /. .~ ) |
||
| brecop2.3 | |- R C_ ( H X. H ) |
||
| brecop2.4 | |- .<_ C_ ( G X. G ) |
||
| brecop2.5 | |- -. (/) e. G |
||
| brecop2.6 | |- dom .+ = ( G X. G ) |
||
| brecop2.7 | |- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( [ <. A , B >. ] .~ R [ <. C , D >. ] .~ <-> ( A .+ D ) .<_ ( B .+ C ) ) ) |
||
| Assertion | brecop2 | |- ( [ <. A , B >. ] .~ R [ <. C , D >. ] .~ <-> ( A .+ D ) .<_ ( B .+ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brecop2.1 | |- dom .~ = ( G X. G ) |
|
| 2 | brecop2.2 | |- H = ( ( G X. G ) /. .~ ) |
|
| 3 | brecop2.3 | |- R C_ ( H X. H ) |
|
| 4 | brecop2.4 | |- .<_ C_ ( G X. G ) |
|
| 5 | brecop2.5 | |- -. (/) e. G |
|
| 6 | brecop2.6 | |- dom .+ = ( G X. G ) |
|
| 7 | brecop2.7 | |- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( [ <. A , B >. ] .~ R [ <. C , D >. ] .~ <-> ( A .+ D ) .<_ ( B .+ C ) ) ) |
|
| 8 | 3 | brel | |- ( [ <. A , B >. ] .~ R [ <. C , D >. ] .~ -> ( [ <. A , B >. ] .~ e. H /\ [ <. C , D >. ] .~ e. H ) ) |
| 9 | ecelqsdm | |- ( ( dom .~ = ( G X. G ) /\ [ <. A , B >. ] .~ e. ( ( G X. G ) /. .~ ) ) -> <. A , B >. e. ( G X. G ) ) |
|
| 10 | 1 9 | mpan | |- ( [ <. A , B >. ] .~ e. ( ( G X. G ) /. .~ ) -> <. A , B >. e. ( G X. G ) ) |
| 11 | 10 2 | eleq2s | |- ( [ <. A , B >. ] .~ e. H -> <. A , B >. e. ( G X. G ) ) |
| 12 | opelxp | |- ( <. A , B >. e. ( G X. G ) <-> ( A e. G /\ B e. G ) ) |
|
| 13 | 11 12 | sylib | |- ( [ <. A , B >. ] .~ e. H -> ( A e. G /\ B e. G ) ) |
| 14 | ecelqsdm | |- ( ( dom .~ = ( G X. G ) /\ [ <. C , D >. ] .~ e. ( ( G X. G ) /. .~ ) ) -> <. C , D >. e. ( G X. G ) ) |
|
| 15 | 1 14 | mpan | |- ( [ <. C , D >. ] .~ e. ( ( G X. G ) /. .~ ) -> <. C , D >. e. ( G X. G ) ) |
| 16 | 15 2 | eleq2s | |- ( [ <. C , D >. ] .~ e. H -> <. C , D >. e. ( G X. G ) ) |
| 17 | opelxp | |- ( <. C , D >. e. ( G X. G ) <-> ( C e. G /\ D e. G ) ) |
|
| 18 | 16 17 | sylib | |- ( [ <. C , D >. ] .~ e. H -> ( C e. G /\ D e. G ) ) |
| 19 | 13 18 | anim12i | |- ( ( [ <. A , B >. ] .~ e. H /\ [ <. C , D >. ] .~ e. H ) -> ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) ) |
| 20 | 8 19 | syl | |- ( [ <. A , B >. ] .~ R [ <. C , D >. ] .~ -> ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) ) |
| 21 | 4 | brel | |- ( ( A .+ D ) .<_ ( B .+ C ) -> ( ( A .+ D ) e. G /\ ( B .+ C ) e. G ) ) |
| 22 | 6 5 | ndmovrcl | |- ( ( A .+ D ) e. G -> ( A e. G /\ D e. G ) ) |
| 23 | 6 5 | ndmovrcl | |- ( ( B .+ C ) e. G -> ( B e. G /\ C e. G ) ) |
| 24 | 22 23 | anim12i | |- ( ( ( A .+ D ) e. G /\ ( B .+ C ) e. G ) -> ( ( A e. G /\ D e. G ) /\ ( B e. G /\ C e. G ) ) ) |
| 25 | 21 24 | syl | |- ( ( A .+ D ) .<_ ( B .+ C ) -> ( ( A e. G /\ D e. G ) /\ ( B e. G /\ C e. G ) ) ) |
| 26 | an42 | |- ( ( ( A e. G /\ D e. G ) /\ ( B e. G /\ C e. G ) ) <-> ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) ) |
|
| 27 | 25 26 | sylib | |- ( ( A .+ D ) .<_ ( B .+ C ) -> ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) ) |
| 28 | 20 27 7 | pm5.21nii | |- ( [ <. A , B >. ] .~ R [ <. C , D >. ] .~ <-> ( A .+ D ) .<_ ( B .+ C ) ) |