This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.5(v) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltaprlem | |- ( C e. P. -> ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelpr | |- |
|
| 2 | 1 | brel | |- ( A |
| 3 | 2 | simpld | |- ( A |
| 4 | ltexpri | |- ( A |
|
| 5 | addclpr | |- ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) e. P. ) |
|
| 6 | ltaddpr | |- ( ( ( C +P. A ) e. P. /\ x e. P. ) -> ( C +P. A ) |
|
| 7 | addasspr | |- ( ( C +P. A ) +P. x ) = ( C +P. ( A +P. x ) ) |
|
| 8 | oveq2 | |- ( ( A +P. x ) = B -> ( C +P. ( A +P. x ) ) = ( C +P. B ) ) |
|
| 9 | 7 8 | eqtrid | |- ( ( A +P. x ) = B -> ( ( C +P. A ) +P. x ) = ( C +P. B ) ) |
| 10 | 9 | breq2d | |- ( ( A +P. x ) = B -> ( ( C +P. A ) |
| 11 | 6 10 | imbitrid | |- ( ( A +P. x ) = B -> ( ( ( C +P. A ) e. P. /\ x e. P. ) -> ( C +P. A ) |
| 12 | 11 | expd | |- ( ( A +P. x ) = B -> ( ( C +P. A ) e. P. -> ( x e. P. -> ( C +P. A ) |
| 13 | 5 12 | syl5 | |- ( ( A +P. x ) = B -> ( ( C e. P. /\ A e. P. ) -> ( x e. P. -> ( C +P. A ) |
| 14 | 13 | com3r | |- ( x e. P. -> ( ( A +P. x ) = B -> ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) |
| 15 | 14 | rexlimiv | |- ( E. x e. P. ( A +P. x ) = B -> ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) |
| 16 | 4 15 | syl | |- ( A |
| 17 | 3 16 | sylan2i | |- ( A |
| 18 | 17 | expd | |- ( A |
| 19 | 18 | pm2.43b | |- ( C e. P. -> ( A |