This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponent ordering relationship for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltexp2a | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ M ) < ( A ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> A e. RR ) |
|
| 2 | 0red | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 0 e. RR ) |
|
| 3 | 1red | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 1 e. RR ) |
|
| 4 | 0lt1 | |- 0 < 1 |
|
| 5 | 4 | a1i | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 0 < 1 ) |
| 6 | simprl | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 1 < A ) |
|
| 7 | 2 3 1 5 6 | lttrd | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 0 < A ) |
| 8 | 1 7 | elrpd | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> A e. RR+ ) |
| 9 | simpl2 | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> M e. ZZ ) |
|
| 10 | rpexpcl | |- ( ( A e. RR+ /\ M e. ZZ ) -> ( A ^ M ) e. RR+ ) |
|
| 11 | 8 9 10 | syl2anc | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ M ) e. RR+ ) |
| 12 | 11 | rpred | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ M ) e. RR ) |
| 13 | 12 | recnd | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ M ) e. CC ) |
| 14 | 13 | mullidd | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( 1 x. ( A ^ M ) ) = ( A ^ M ) ) |
| 15 | simprr | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> M < N ) |
|
| 16 | simpl3 | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> N e. ZZ ) |
|
| 17 | znnsub | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( N - M ) e. NN ) ) |
|
| 18 | 9 16 17 | syl2anc | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( M < N <-> ( N - M ) e. NN ) ) |
| 19 | 15 18 | mpbid | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( N - M ) e. NN ) |
| 20 | expgt1 | |- ( ( A e. RR /\ ( N - M ) e. NN /\ 1 < A ) -> 1 < ( A ^ ( N - M ) ) ) |
|
| 21 | 1 19 6 20 | syl3anc | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 1 < ( A ^ ( N - M ) ) ) |
| 22 | 1 | recnd | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> A e. CC ) |
| 23 | 7 | gt0ne0d | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> A =/= 0 ) |
| 24 | expsub | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( A ^ ( N - M ) ) = ( ( A ^ N ) / ( A ^ M ) ) ) |
|
| 25 | 22 23 16 9 24 | syl22anc | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ ( N - M ) ) = ( ( A ^ N ) / ( A ^ M ) ) ) |
| 26 | 21 25 | breqtrd | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 1 < ( ( A ^ N ) / ( A ^ M ) ) ) |
| 27 | rpexpcl | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( A ^ N ) e. RR+ ) |
|
| 28 | 8 16 27 | syl2anc | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ N ) e. RR+ ) |
| 29 | 28 | rpred | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ N ) e. RR ) |
| 30 | 3 29 11 | ltmuldivd | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( ( 1 x. ( A ^ M ) ) < ( A ^ N ) <-> 1 < ( ( A ^ N ) / ( A ^ M ) ) ) ) |
| 31 | 26 30 | mpbird | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( 1 x. ( A ^ M ) ) < ( A ^ N ) ) |
| 32 | 14 31 | eqbrtrrd | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ M ) < ( A ^ N ) ) |