This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define pre-ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. Similar to Definition 5 of Suppes p. 162. (Contributed by NM, 28-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ltpq | |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cltpq | |- |
|
| 1 | vx | |- x |
|
| 2 | vy | |- y |
|
| 3 | 1 | cv | |- x |
| 4 | cnpi | |- N. |
|
| 5 | 4 4 | cxp | |- ( N. X. N. ) |
| 6 | 3 5 | wcel | |- x e. ( N. X. N. ) |
| 7 | 2 | cv | |- y |
| 8 | 7 5 | wcel | |- y e. ( N. X. N. ) |
| 9 | 6 8 | wa | |- ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) |
| 10 | c1st | |- 1st |
|
| 11 | 3 10 | cfv | |- ( 1st ` x ) |
| 12 | cmi | |- .N |
|
| 13 | c2nd | |- 2nd |
|
| 14 | 7 13 | cfv | |- ( 2nd ` y ) |
| 15 | 11 14 12 | co | |- ( ( 1st ` x ) .N ( 2nd ` y ) ) |
| 16 | clti | |- |
|
| 17 | 7 10 | cfv | |- ( 1st ` y ) |
| 18 | 3 13 | cfv | |- ( 2nd ` x ) |
| 19 | 17 18 12 | co | |- ( ( 1st ` y ) .N ( 2nd ` x ) ) |
| 20 | 15 19 16 | wbr | |- ( ( 1st ` x ) .N ( 2nd ` y ) ) |
| 21 | 9 20 | wa | |- ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) ) |
| 22 | 21 1 2 | copab | |- { <. x , y >. | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) ) |
| 23 | 0 22 | wceq | |- |