This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any member of ( N. X. N. ) relates to the representative of its equivalence class. (Contributed by Mario Carneiro, 6-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nqerrel | |- ( A e. ( N. X. N. ) -> A ~Q ( /Q ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( /Q ` A ) = ( /Q ` A ) |
|
| 2 | nqerf | |- /Q : ( N. X. N. ) --> Q. |
|
| 3 | ffn | |- ( /Q : ( N. X. N. ) --> Q. -> /Q Fn ( N. X. N. ) ) |
|
| 4 | 2 3 | ax-mp | |- /Q Fn ( N. X. N. ) |
| 5 | fnbrfvb | |- ( ( /Q Fn ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> ( ( /Q ` A ) = ( /Q ` A ) <-> A /Q ( /Q ` A ) ) ) |
|
| 6 | 4 5 | mpan | |- ( A e. ( N. X. N. ) -> ( ( /Q ` A ) = ( /Q ` A ) <-> A /Q ( /Q ` A ) ) ) |
| 7 | 1 6 | mpbii | |- ( A e. ( N. X. N. ) -> A /Q ( /Q ` A ) ) |
| 8 | df-erq | |- /Q = ( ~Q i^i ( ( N. X. N. ) X. Q. ) ) |
|
| 9 | inss1 | |- ( ~Q i^i ( ( N. X. N. ) X. Q. ) ) C_ ~Q |
|
| 10 | 8 9 | eqsstri | |- /Q C_ ~Q |
| 11 | 10 | ssbri | |- ( A /Q ( /Q ` A ) -> A ~Q ( /Q ` A ) ) |
| 12 | 7 11 | syl | |- ( A e. ( N. X. N. ) -> A ~Q ( /Q ` A ) ) |