This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 26-Sep-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltrec | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A < B <-> ( 1 / B ) < ( 1 / A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 1 e. RR ) |
|
| 2 | simprl | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> B e. RR ) |
|
| 3 | simpll | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> A e. RR ) |
|
| 4 | simplr | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < A ) |
|
| 5 | ltmuldiv | |- ( ( 1 e. RR /\ B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( 1 x. A ) < B <-> 1 < ( B / A ) ) ) |
|
| 6 | 1 2 3 4 5 | syl112anc | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 x. A ) < B <-> 1 < ( B / A ) ) ) |
| 7 | 3 | recnd | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> A e. CC ) |
| 8 | 7 | mullidd | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 x. A ) = A ) |
| 9 | 8 | breq1d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 x. A ) < B <-> A < B ) ) |
| 10 | 2 | recnd | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> B e. CC ) |
| 11 | 4 | gt0ne0d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> A =/= 0 ) |
| 12 | 10 7 11 | divrecd | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( B / A ) = ( B x. ( 1 / A ) ) ) |
| 13 | 12 | breq2d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 < ( B / A ) <-> 1 < ( B x. ( 1 / A ) ) ) ) |
| 14 | 6 9 13 | 3bitr3d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A < B <-> 1 < ( B x. ( 1 / A ) ) ) ) |
| 15 | 3 11 | rereccld | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 / A ) e. RR ) |
| 16 | simprr | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < B ) |
|
| 17 | ltdivmul | |- ( ( 1 e. RR /\ ( 1 / A ) e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / B ) < ( 1 / A ) <-> 1 < ( B x. ( 1 / A ) ) ) ) |
|
| 18 | 1 15 2 16 17 | syl112anc | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / B ) < ( 1 / A ) <-> 1 < ( B x. ( 1 / A ) ) ) ) |
| 19 | 14 18 | bitr4d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A < B <-> ( 1 / B ) < ( 1 / A ) ) ) |