This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of redundant antecedents in an ordering law. (Contributed by NM, 7-Mar-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ndmov.1 | |- dom F = ( S X. S ) |
|
| ndmovord.4 | |- R C_ ( S X. S ) |
||
| ndmovord.5 | |- -. (/) e. S |
||
| ndmovord.6 | |- ( ( A e. S /\ B e. S /\ C e. S ) -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
||
| Assertion | ndmovord | |- ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmov.1 | |- dom F = ( S X. S ) |
|
| 2 | ndmovord.4 | |- R C_ ( S X. S ) |
|
| 3 | ndmovord.5 | |- -. (/) e. S |
|
| 4 | ndmovord.6 | |- ( ( A e. S /\ B e. S /\ C e. S ) -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
|
| 5 | 4 | 3expia | |- ( ( A e. S /\ B e. S ) -> ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) ) |
| 6 | 2 | brel | |- ( A R B -> ( A e. S /\ B e. S ) ) |
| 7 | 2 | brel | |- ( ( C F A ) R ( C F B ) -> ( ( C F A ) e. S /\ ( C F B ) e. S ) ) |
| 8 | 1 3 | ndmovrcl | |- ( ( C F A ) e. S -> ( C e. S /\ A e. S ) ) |
| 9 | 8 | simprd | |- ( ( C F A ) e. S -> A e. S ) |
| 10 | 1 3 | ndmovrcl | |- ( ( C F B ) e. S -> ( C e. S /\ B e. S ) ) |
| 11 | 10 | simprd | |- ( ( C F B ) e. S -> B e. S ) |
| 12 | 9 11 | anim12i | |- ( ( ( C F A ) e. S /\ ( C F B ) e. S ) -> ( A e. S /\ B e. S ) ) |
| 13 | 7 12 | syl | |- ( ( C F A ) R ( C F B ) -> ( A e. S /\ B e. S ) ) |
| 14 | 6 13 | pm5.21ni | |- ( -. ( A e. S /\ B e. S ) -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
| 15 | 14 | a1d | |- ( -. ( A e. S /\ B e. S ) -> ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) ) |
| 16 | 5 15 | pm2.61i | |- ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |