This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995) (Revised by Mario Carneiro, 26-Dec-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addpqnq | |- ( ( A e. Q. /\ B e. Q. ) -> ( A +Q B ) = ( /Q ` ( A +pQ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plq | |- +Q = ( ( /Q o. +pQ ) |` ( Q. X. Q. ) ) |
|
| 2 | 1 | fveq1i | |- ( +Q ` <. A , B >. ) = ( ( ( /Q o. +pQ ) |` ( Q. X. Q. ) ) ` <. A , B >. ) |
| 3 | 2 | a1i | |- ( ( A e. Q. /\ B e. Q. ) -> ( +Q ` <. A , B >. ) = ( ( ( /Q o. +pQ ) |` ( Q. X. Q. ) ) ` <. A , B >. ) ) |
| 4 | opelxpi | |- ( ( A e. Q. /\ B e. Q. ) -> <. A , B >. e. ( Q. X. Q. ) ) |
|
| 5 | 4 | fvresd | |- ( ( A e. Q. /\ B e. Q. ) -> ( ( ( /Q o. +pQ ) |` ( Q. X. Q. ) ) ` <. A , B >. ) = ( ( /Q o. +pQ ) ` <. A , B >. ) ) |
| 6 | df-plpq | |- +pQ = ( x e. ( N. X. N. ) , y e. ( N. X. N. ) |-> <. ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. ) |
|
| 7 | opex | |- <. ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. e. _V |
|
| 8 | 6 7 | fnmpoi | |- +pQ Fn ( ( N. X. N. ) X. ( N. X. N. ) ) |
| 9 | elpqn | |- ( A e. Q. -> A e. ( N. X. N. ) ) |
|
| 10 | elpqn | |- ( B e. Q. -> B e. ( N. X. N. ) ) |
|
| 11 | opelxpi | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> <. A , B >. e. ( ( N. X. N. ) X. ( N. X. N. ) ) ) |
|
| 12 | 9 10 11 | syl2an | |- ( ( A e. Q. /\ B e. Q. ) -> <. A , B >. e. ( ( N. X. N. ) X. ( N. X. N. ) ) ) |
| 13 | fvco2 | |- ( ( +pQ Fn ( ( N. X. N. ) X. ( N. X. N. ) ) /\ <. A , B >. e. ( ( N. X. N. ) X. ( N. X. N. ) ) ) -> ( ( /Q o. +pQ ) ` <. A , B >. ) = ( /Q ` ( +pQ ` <. A , B >. ) ) ) |
|
| 14 | 8 12 13 | sylancr | |- ( ( A e. Q. /\ B e. Q. ) -> ( ( /Q o. +pQ ) ` <. A , B >. ) = ( /Q ` ( +pQ ` <. A , B >. ) ) ) |
| 15 | 3 5 14 | 3eqtrd | |- ( ( A e. Q. /\ B e. Q. ) -> ( +Q ` <. A , B >. ) = ( /Q ` ( +pQ ` <. A , B >. ) ) ) |
| 16 | df-ov | |- ( A +Q B ) = ( +Q ` <. A , B >. ) |
|
| 17 | df-ov | |- ( A +pQ B ) = ( +pQ ` <. A , B >. ) |
|
| 18 | 17 | fveq2i | |- ( /Q ` ( A +pQ B ) ) = ( /Q ` ( +pQ ` <. A , B >. ) ) |
| 19 | 15 16 18 | 3eqtr4g | |- ( ( A e. Q. /\ B e. Q. ) -> ( A +Q B ) = ( /Q ` ( A +pQ B ) ) ) |