This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lss0cl.z | |- .0. = ( 0g ` W ) |
|
| lss0cl.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lss0cl | |- ( ( W e. LMod /\ U e. S ) -> .0. e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lss0cl.z | |- .0. = ( 0g ` W ) |
|
| 2 | lss0cl.s | |- S = ( LSubSp ` W ) |
|
| 3 | 2 | lssn0 | |- ( U e. S -> U =/= (/) ) |
| 4 | n0 | |- ( U =/= (/) <-> E. x x e. U ) |
|
| 5 | 3 4 | sylib | |- ( U e. S -> E. x x e. U ) |
| 6 | 5 | adantl | |- ( ( W e. LMod /\ U e. S ) -> E. x x e. U ) |
| 7 | simp1 | |- ( ( W e. LMod /\ U e. S /\ x e. U ) -> W e. LMod ) |
|
| 8 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 9 | 8 2 | lssel | |- ( ( U e. S /\ x e. U ) -> x e. ( Base ` W ) ) |
| 10 | 9 | 3adant1 | |- ( ( W e. LMod /\ U e. S /\ x e. U ) -> x e. ( Base ` W ) ) |
| 11 | eqid | |- ( -g ` W ) = ( -g ` W ) |
|
| 12 | 8 1 11 | lmodsubid | |- ( ( W e. LMod /\ x e. ( Base ` W ) ) -> ( x ( -g ` W ) x ) = .0. ) |
| 13 | 7 10 12 | syl2anc | |- ( ( W e. LMod /\ U e. S /\ x e. U ) -> ( x ( -g ` W ) x ) = .0. ) |
| 14 | 11 2 | lssvsubcl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. U /\ x e. U ) ) -> ( x ( -g ` W ) x ) e. U ) |
| 15 | 14 | anabsan2 | |- ( ( ( W e. LMod /\ U e. S ) /\ x e. U ) -> ( x ( -g ` W ) x ) e. U ) |
| 16 | 15 | 3impa | |- ( ( W e. LMod /\ U e. S /\ x e. U ) -> ( x ( -g ` W ) x ) e. U ) |
| 17 | 13 16 | eqeltrrd | |- ( ( W e. LMod /\ U e. S /\ x e. U ) -> .0. e. U ) |
| 18 | 17 | 3expia | |- ( ( W e. LMod /\ U e. S ) -> ( x e. U -> .0. e. U ) ) |
| 19 | 18 | exlimdv | |- ( ( W e. LMod /\ U e. S ) -> ( E. x x e. U -> .0. e. U ) ) |
| 20 | 6 19 | mpd | |- ( ( W e. LMod /\ U e. S ) -> .0. e. U ) |