This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Independence of 2 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspindp3.v | |- V = ( Base ` W ) |
|
| lspindp3.p | |- .+ = ( +g ` W ) |
||
| lspindp3.o | |- .0. = ( 0g ` W ) |
||
| lspindp3.n | |- N = ( LSpan ` W ) |
||
| lspindp3.w | |- ( ph -> W e. LVec ) |
||
| lspindp3.x | |- ( ph -> X e. V ) |
||
| lspindp3.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
||
| lspindp3.e | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
||
| Assertion | lspindp3 | |- ( ph -> ( N ` { X } ) =/= ( N ` { ( X .+ Y ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspindp3.v | |- V = ( Base ` W ) |
|
| 2 | lspindp3.p | |- .+ = ( +g ` W ) |
|
| 3 | lspindp3.o | |- .0. = ( 0g ` W ) |
|
| 4 | lspindp3.n | |- N = ( LSpan ` W ) |
|
| 5 | lspindp3.w | |- ( ph -> W e. LVec ) |
|
| 6 | lspindp3.x | |- ( ph -> X e. V ) |
|
| 7 | lspindp3.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
|
| 8 | lspindp3.e | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
|
| 9 | 5 | adantr | |- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> W e. LVec ) |
| 10 | 6 | adantr | |- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> X e. V ) |
| 11 | 7 | adantr | |- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> Y e. ( V \ { .0. } ) ) |
| 12 | simpr | |- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) |
|
| 13 | 1 2 3 4 9 10 11 12 | lspabs2 | |- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 14 | 13 | ex | |- ( ph -> ( ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 15 | 14 | necon3d | |- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> ( N ` { X } ) =/= ( N ` { ( X .+ Y ) } ) ) ) |
| 16 | 8 15 | mpd | |- ( ph -> ( N ` { X } ) =/= ( N ` { ( X .+ Y ) } ) ) |