This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express that vectors have different spans. (Contributed by NM, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnne1.v | |- V = ( Base ` W ) |
|
| lspsnne1.o | |- .0. = ( 0g ` W ) |
||
| lspsnne1.n | |- N = ( LSpan ` W ) |
||
| lspsnne1.w | |- ( ph -> W e. LVec ) |
||
| lspsnne1.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
| lspsnne1.y | |- ( ph -> Y e. V ) |
||
| lspsnne1.e | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
||
| Assertion | lspsnne1 | |- ( ph -> -. X e. ( N ` { Y } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnne1.v | |- V = ( Base ` W ) |
|
| 2 | lspsnne1.o | |- .0. = ( 0g ` W ) |
|
| 3 | lspsnne1.n | |- N = ( LSpan ` W ) |
|
| 4 | lspsnne1.w | |- ( ph -> W e. LVec ) |
|
| 5 | lspsnne1.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
| 6 | lspsnne1.y | |- ( ph -> Y e. V ) |
|
| 7 | lspsnne1.e | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
|
| 8 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 9 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 10 | 4 9 | syl | |- ( ph -> W e. LMod ) |
| 11 | 1 8 3 | lspsncl | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 12 | 10 6 11 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 13 | 5 | eldifad | |- ( ph -> X e. V ) |
| 14 | 1 8 3 10 12 13 | ellspsn5b | |- ( ph -> ( X e. ( N ` { Y } ) <-> ( N ` { X } ) C_ ( N ` { Y } ) ) ) |
| 15 | 14 | notbid | |- ( ph -> ( -. X e. ( N ` { Y } ) <-> -. ( N ` { X } ) C_ ( N ` { Y } ) ) ) |
| 16 | 1 2 3 4 5 6 | lspsncmp | |- ( ph -> ( ( N ` { X } ) C_ ( N ` { Y } ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 17 | 16 | necon3bbid | |- ( ph -> ( -. ( N ` { X } ) C_ ( N ` { Y } ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) ) |
| 18 | 15 17 | bitrd | |- ( ph -> ( -. X e. ( N ` { Y } ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) ) |
| 19 | 7 18 | mpbird | |- ( ph -> -. X e. ( N ` { Y } ) ) |