This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lspprat . Combine the two cases and show a contradiction to U C. ( N{ X , Y } ) under the assumptions on x and y . (Contributed by NM, 29-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprat.v | |- V = ( Base ` W ) |
|
| lspprat.s | |- S = ( LSubSp ` W ) |
||
| lspprat.n | |- N = ( LSpan ` W ) |
||
| lspprat.w | |- ( ph -> W e. LVec ) |
||
| lspprat.u | |- ( ph -> U e. S ) |
||
| lspprat.x | |- ( ph -> X e. V ) |
||
| lspprat.y | |- ( ph -> Y e. V ) |
||
| lspprat.p | |- ( ph -> U C. ( N ` { X , Y } ) ) |
||
| lsppratlem1.o | |- .0. = ( 0g ` W ) |
||
| lsppratlem1.x2 | |- ( ph -> x e. ( U \ { .0. } ) ) |
||
| lsppratlem1.y2 | |- ( ph -> y e. ( U \ ( N ` { x } ) ) ) |
||
| Assertion | lsppratlem5 | |- ( ph -> ( N ` { X , Y } ) C_ U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | |- V = ( Base ` W ) |
|
| 2 | lspprat.s | |- S = ( LSubSp ` W ) |
|
| 3 | lspprat.n | |- N = ( LSpan ` W ) |
|
| 4 | lspprat.w | |- ( ph -> W e. LVec ) |
|
| 5 | lspprat.u | |- ( ph -> U e. S ) |
|
| 6 | lspprat.x | |- ( ph -> X e. V ) |
|
| 7 | lspprat.y | |- ( ph -> Y e. V ) |
|
| 8 | lspprat.p | |- ( ph -> U C. ( N ` { X , Y } ) ) |
|
| 9 | lsppratlem1.o | |- .0. = ( 0g ` W ) |
|
| 10 | lsppratlem1.x2 | |- ( ph -> x e. ( U \ { .0. } ) ) |
|
| 11 | lsppratlem1.y2 | |- ( ph -> y e. ( U \ ( N ` { x } ) ) ) |
|
| 12 | 4 | adantr | |- ( ( ph /\ x e. ( N ` { Y } ) ) -> W e. LVec ) |
| 13 | 5 | adantr | |- ( ( ph /\ x e. ( N ` { Y } ) ) -> U e. S ) |
| 14 | 6 | adantr | |- ( ( ph /\ x e. ( N ` { Y } ) ) -> X e. V ) |
| 15 | 7 | adantr | |- ( ( ph /\ x e. ( N ` { Y } ) ) -> Y e. V ) |
| 16 | 8 | adantr | |- ( ( ph /\ x e. ( N ` { Y } ) ) -> U C. ( N ` { X , Y } ) ) |
| 17 | 10 | adantr | |- ( ( ph /\ x e. ( N ` { Y } ) ) -> x e. ( U \ { .0. } ) ) |
| 18 | 11 | adantr | |- ( ( ph /\ x e. ( N ` { Y } ) ) -> y e. ( U \ ( N ` { x } ) ) ) |
| 19 | simpr | |- ( ( ph /\ x e. ( N ` { Y } ) ) -> x e. ( N ` { Y } ) ) |
|
| 20 | 1 2 3 12 13 14 15 16 9 17 18 19 | lsppratlem3 | |- ( ( ph /\ x e. ( N ` { Y } ) ) -> ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) |
| 21 | 4 | adantr | |- ( ( ph /\ X e. ( N ` { x , Y } ) ) -> W e. LVec ) |
| 22 | 5 | adantr | |- ( ( ph /\ X e. ( N ` { x , Y } ) ) -> U e. S ) |
| 23 | 6 | adantr | |- ( ( ph /\ X e. ( N ` { x , Y } ) ) -> X e. V ) |
| 24 | 7 | adantr | |- ( ( ph /\ X e. ( N ` { x , Y } ) ) -> Y e. V ) |
| 25 | 8 | adantr | |- ( ( ph /\ X e. ( N ` { x , Y } ) ) -> U C. ( N ` { X , Y } ) ) |
| 26 | 10 | adantr | |- ( ( ph /\ X e. ( N ` { x , Y } ) ) -> x e. ( U \ { .0. } ) ) |
| 27 | 11 | adantr | |- ( ( ph /\ X e. ( N ` { x , Y } ) ) -> y e. ( U \ ( N ` { x } ) ) ) |
| 28 | simpr | |- ( ( ph /\ X e. ( N ` { x , Y } ) ) -> X e. ( N ` { x , Y } ) ) |
|
| 29 | 1 2 3 21 22 23 24 25 9 26 27 28 | lsppratlem4 | |- ( ( ph /\ X e. ( N ` { x , Y } ) ) -> ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) |
| 30 | 1 2 3 4 5 6 7 8 9 10 11 | lsppratlem1 | |- ( ph -> ( x e. ( N ` { Y } ) \/ X e. ( N ` { x , Y } ) ) ) |
| 31 | 20 29 30 | mpjaodan | |- ( ph -> ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) |
| 32 | 4 | adantr | |- ( ( ph /\ ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) -> W e. LVec ) |
| 33 | 5 | adantr | |- ( ( ph /\ ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) -> U e. S ) |
| 34 | 6 | adantr | |- ( ( ph /\ ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) -> X e. V ) |
| 35 | 7 | adantr | |- ( ( ph /\ ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) -> Y e. V ) |
| 36 | 8 | adantr | |- ( ( ph /\ ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) -> U C. ( N ` { X , Y } ) ) |
| 37 | 10 | adantr | |- ( ( ph /\ ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) -> x e. ( U \ { .0. } ) ) |
| 38 | 11 | adantr | |- ( ( ph /\ ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) -> y e. ( U \ ( N ` { x } ) ) ) |
| 39 | simprl | |- ( ( ph /\ ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) -> X e. ( N ` { x , y } ) ) |
|
| 40 | simprr | |- ( ( ph /\ ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) -> Y e. ( N ` { x , y } ) ) |
|
| 41 | 1 2 3 32 33 34 35 36 9 37 38 39 40 | lsppratlem2 | |- ( ( ph /\ ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) -> ( N ` { X , Y } ) C_ U ) |
| 42 | 31 41 | mpdan | |- ( ph -> ( N ` { X , Y } ) C_ U ) |