This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lspprat . Show that if X and Y are both in ( N{ x , y } ) (which will be our goal for each of the two cases above), then ( N{ X , Y } ) C_ U , contradicting the hypothesis for U . (Contributed by NM, 29-Aug-2014) (Revised by Mario Carneiro, 5-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprat.v | |- V = ( Base ` W ) |
|
| lspprat.s | |- S = ( LSubSp ` W ) |
||
| lspprat.n | |- N = ( LSpan ` W ) |
||
| lspprat.w | |- ( ph -> W e. LVec ) |
||
| lspprat.u | |- ( ph -> U e. S ) |
||
| lspprat.x | |- ( ph -> X e. V ) |
||
| lspprat.y | |- ( ph -> Y e. V ) |
||
| lspprat.p | |- ( ph -> U C. ( N ` { X , Y } ) ) |
||
| lsppratlem1.o | |- .0. = ( 0g ` W ) |
||
| lsppratlem1.x2 | |- ( ph -> x e. ( U \ { .0. } ) ) |
||
| lsppratlem1.y2 | |- ( ph -> y e. ( U \ ( N ` { x } ) ) ) |
||
| lsppratlem2.x1 | |- ( ph -> X e. ( N ` { x , y } ) ) |
||
| lsppratlem2.y1 | |- ( ph -> Y e. ( N ` { x , y } ) ) |
||
| Assertion | lsppratlem2 | |- ( ph -> ( N ` { X , Y } ) C_ U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | |- V = ( Base ` W ) |
|
| 2 | lspprat.s | |- S = ( LSubSp ` W ) |
|
| 3 | lspprat.n | |- N = ( LSpan ` W ) |
|
| 4 | lspprat.w | |- ( ph -> W e. LVec ) |
|
| 5 | lspprat.u | |- ( ph -> U e. S ) |
|
| 6 | lspprat.x | |- ( ph -> X e. V ) |
|
| 7 | lspprat.y | |- ( ph -> Y e. V ) |
|
| 8 | lspprat.p | |- ( ph -> U C. ( N ` { X , Y } ) ) |
|
| 9 | lsppratlem1.o | |- .0. = ( 0g ` W ) |
|
| 10 | lsppratlem1.x2 | |- ( ph -> x e. ( U \ { .0. } ) ) |
|
| 11 | lsppratlem1.y2 | |- ( ph -> y e. ( U \ ( N ` { x } ) ) ) |
|
| 12 | lsppratlem2.x1 | |- ( ph -> X e. ( N ` { x , y } ) ) |
|
| 13 | lsppratlem2.y1 | |- ( ph -> Y e. ( N ` { x , y } ) ) |
|
| 14 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 15 | 4 14 | syl | |- ( ph -> W e. LMod ) |
| 16 | 10 | eldifad | |- ( ph -> x e. U ) |
| 17 | 11 | eldifad | |- ( ph -> y e. U ) |
| 18 | 16 17 | prssd | |- ( ph -> { x , y } C_ U ) |
| 19 | 1 2 | lssss | |- ( U e. S -> U C_ V ) |
| 20 | 5 19 | syl | |- ( ph -> U C_ V ) |
| 21 | 18 20 | sstrd | |- ( ph -> { x , y } C_ V ) |
| 22 | 1 2 3 | lspcl | |- ( ( W e. LMod /\ { x , y } C_ V ) -> ( N ` { x , y } ) e. S ) |
| 23 | 15 21 22 | syl2anc | |- ( ph -> ( N ` { x , y } ) e. S ) |
| 24 | 2 3 15 23 12 13 | lspprss | |- ( ph -> ( N ` { X , Y } ) C_ ( N ` { x , y } ) ) |
| 25 | 2 3 15 5 16 17 | lspprss | |- ( ph -> ( N ` { x , y } ) C_ U ) |
| 26 | 24 25 | sstrd | |- ( ph -> ( N ` { X , Y } ) C_ U ) |